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The matrix exponential has many applications in the fields of 

mathematics, physics and economics. There are many explicit formulas 

that have been developed for compute the matrix exponential. In this 

paper we give some explicit formulas for the exponentials of some 

special matrices. The main results are the extension of Beibei Wu's 

work. 
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Introduction:- 
Consider the linear vector differential equation  ̇( )    ( )  where  ( ) is an n-vector and A is an     matrix. It 

plays a fundamental role in the study of dynamical systems and linear control systems. It is well known that the 

solution to this equation is given by  ( )         where     denotes the exponential of the matrix A times t and 

can be identified as the convergent power series 

    ∑
(  ) 

  

 

   

  

 

Therefore, it is important to have accurate numerical methods for computing the matrix exponential function. As a 

result of this, many explicit formulas have been developed for the matrix exponential by many authors. Through this 

work, we also hope to give explicit formulas for computing the exponentials of some special matrices. 

 

Main Results:- 
Denote the set of non-negative integers by N0, the set of complex numbers by C, and the set of all     complex 

matrices by     .The symbols           will be used to denote the     zero matrix and the     identity 

matrix, respectively.  

 

Bernstein and So gave explicit formulae for A
2
 = A, A

2
=    and A

3
=   A, ∈C and Beibei Wu gave explicit 

formulae for A
k+1

=ρA
k
, A

k+2
=ρ

2
A

k 
 and A

k+3
=ρ

3
A

k
 , ∈C and  ∈   . Now we hope to extend Beibei Wu’s results to 

the general cases. Furthermore, we derive explicit formulae for computing the exponentials of some special matrices 

that satisfy polynomials A
k+4r

=ρ
4r

A
k
  and A

k+(4r+2) 
= ρ

(4r+2)
A

k
 ,  ∈       ∈   . 
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Theorem 1. Let ∈      , where             ,  ∈       ∈   . 
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By De Moivre’s theorem, 
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By integrating this result by   we can obtain the formulas for remaining infinite power series. 

 

Similarly we can derive the formulas for    when  
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By integrating this result with respect to   we can obtain the formulas for remaining infinite power series. 
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