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Abstract 

Inverted pendulum (IP) has become a popular topic among physicist and control engineers due to advanced applications related 

to this particular pendulum. Two wheel balancing robots, rockets and missile guidance systems are some complex applications 

of the IP. The IP is highly unstable and to maintain the vertical upright position, an active control system is needed. 

Proportional, Integral and Derivative (PID) controller is one of the best controlling methods used in various dynamic control 

systems recently because of the simplicity and applicability. In this paper, two PID controllers are used to balance the IP and 

an error optimization method is used for filtering unwanted sensor responses. The PID controllers have been designed for 

controlling of each sub-system. PID gain parameters are tuned separately and manually using trial and error approach. 

Mathematical model of this IP is developed to determine the dynamic properties of the IP system and through this model, state 

space model of the IP system is developed. With the help of state space model, Kalman filter is developed and used to optimize 

the error in sensor readings. Then control system of the IP based on the PID controllers and the Kalman filter (control 

algorithm) is implemented on a microcontroller based platform in order to balance the inverted pendulum on a trolley using the 

mechanical system which is controlled by the microcontroller. Main objective of this control system is to balance the IP in an 

upright position in the middle of the two rails. Behavior of the IP system with this control algorithm is monitored through the 

real-time data acquisition system. The data of the IP system is used to contrast the IP behavior with each PID gain parameter 

through a graphical representation. With proper gain parameters, the IP system shows best smooth behavior of it. 
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1. Introduction 

Inverted pendulum is a classical problem in physics. The 

inverted pendulum is also popular among engineers due to its 

applications in relevant fields. This system is also used in 

study purposes to demonstrate and analyze some of the 

computer algorithms based on control theory. At present, 

inverted pendulum [1] and PID controllers [2] are popular 

due to their applications in robotics [3], automotive, 

aerospace, advanced mobility systems and military etc. A lot 

of researches have been done to analyze the IP behavior 

through different types of controlling methods. In all those 

controllers, the primary object is to balance the IP in a 

vertically upright state while managing external disturbances 

[4-5]. 

In many of the cases, system control algorithms were 

developed by considering the Newtonian mechanics or the 

Lagrangian equations. The Lagrangian is used to construct 

the mathematical model. But the system model is a non-

linear mathematical model. Therefore, it is converted into a 

simple linear model using space state modeling and the space 

state model is used furthermore to prove that the system is 
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controllable and so on. This classical approach is popular due 

to its applicability on most of the control algorithms. These 

control algorithms are developed on computers [6] in order to 

analyze and check whether the algorithm is working as 

expected by giving desired results. 

Computer based control systems consist of sensors which are 

used to get the system feedback. In the feedback of the 

system, noises could be included. Therefore, it is important to 

reduce these noises in the feedback signals in order to 

develop a better control algorithm. Recently Kalman filter 

has got a remarkable place in error optimizations [7] in the 

field of control engineering and aerospace applications. This 

filter is popular due to its predictor corrector behavior. When 

it comes to the development stage of the Kalman filter, a set 

of linear equations are used to optimize the sensor outputs 

and because of that the implementation has become less 

complex than most of other error optimization methods. In 

this paper, the control algorithm based on PID controllers is 

implemented on a microcontroller and used to analyze and 

contrast the performance of the inverted pendulum according 

to each PID gain parameters. Kalman filter is also used as the 

error optimizer in the control algorithm slightly with the PID 

controllers. 

2. Review of Related Literature 

The IP problem [8] has become a famous topic among the 

physicist and control engineering community. Due to the 

complexity and the applicability of the IP problem, a lot of 

research papers have been published on it. Following 

literature reviews are to give a brief idea about practical 

applications of IP control systems, PID controllers and 

Kalman filter. 

2.1. Applications 

Segway is a personal transport vehicle [1] that uses an 

autonomous two-wheel balancing platform. The Segway is 

also based on the IP model. Segway is balanced by computer 

algorithms and position sensors inside it with the help of 

three gyroscopes and two backup gyroscopes. But the cost is 

considerably higher than the other transportation methods. 

2.2. PID Controllers in IP Problems 

The Microchip Company [9] has developed an IP control 

system using their PIC16F684 microcontroller. PID 

controller has been used as the control algorithm in their 

solution. In order to eliminate the noise signals, a low pass 

filter (the Bessel filter) has been used. This is a simple 

method because the horizontal position has not been involved 

here. That means the system needs only one PID controller. 

Jia-Jun Wang [6] has published a research paper on the IP 

and the PID based control system. In this paper he has 

developed three types of IP models. The models are based on 

1D, 2D and 3D space coordinates. For each model the 

equations of the motion have been determined using the 

Lagrangian of the system. Then nonlinear equations of the 

motion were converted into linear equations using space state 

systems. Then the linearized system has been used to apply 

the PID algorithm. However, this is just a computer-based 

simulation. New computers have enough processing power to 

handle this kind of long and complex algorithms. 

Mahbubeh Moghaddas et al, [10] have tried to implement a 

control system for the IP problem using Genetic Algorithm 

(GA). Even in this project, the mathematical model of the 

pendulum has been derived using Lagrangian equation. They 

have used MATLAB Simulink to build up the model in a 

computer. Parameter adjustment through hard mathematical 

calculation take too much time at different problems. In this 

method the researchers have tried to give an optimal answer 

with the GA. 

2.3. New Trends of PID Controllers 

In the paper by Kada and Ghazzawi [2] have proposed an 

effective method for implementing of PID controller to UAV. 

The reason was the trial and error or analyze and iterate 

tuning process of PID algorithms consumes a large amount 

of manpower until the desired performance of the control 

system is obtained. The new method is about to propose a 

mathematical based framework for designing PID controllers 

for the complex systems like airplanes. Here the method 

known as deadbeat step response was used combined with 

the proposed solution. This method was to reduce the number 

of tuning parameters in complex PID algorithms. 

In the paper by Moghavvemi et al. [11], behavior of a 

quadcopter was studied due to the interesting features of this 

small size vehicle and the dynamic features of it. In quad 

copters, the rotational speed of the four rotors are 

independent. Therefore, three-dimensional control axes 

called pitch, roll and yaw can be controlled individually. This 

is caused to increase the mobility of the vehicle. In order to 

make this UAV (or drone) balance in the air, a proper control 

system is needed and this paper discusses about the PID 

controller to fulfill that requirement. 

2.4. Kalman Filter as State Update 

Algorithm 

As described by Greg Welch and Gary Bishop, “The Kalman 

filter is a set of mathematical equations that provides an 

efficient computational (recursive) means to estimate the 

state of a process, in a way that minimizes the mean of the 

squared error. The filter is very powerful in several aspects: it 

supports estimations of past, present, and even future states, 
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and it can do so even when the precise nature of the modeled 

system is unknown.” [12]. The filter provides an accurate 

current state of the system. This property is used in the IP 

problem to measure the vertical angle of the pendulum to 

control the stability of the pendulum. 

In the article “Kalman Filtering” written by Dan Simon, [13] 

has mentioned that “The Kalman filter is a tool that can 

estimate the variables of a wide range of processes. In 

mathematical terms we would say that a Kalman filter 

estimates the states of a linear system. The Kalman filter not 

only works well in practice, but it is theoretically attractive 

because it can be shown that of all possible filters, it is the 

only one that minimizes the variance of the estimation error. 

Kalman filters are often implemented in embedded control 

systems because in order to control a process, you first need 

an accurate estimation of the process variables”. 

3. Theoretical Approach to 

Mathematical Model 

Physical behavior of the pendulum is analyzed by 

considering the kinetic and potential energies of the system. 

The objective of this approach is to use the Euler-Lagrangian 

Equations to develop the mathematical model. Then the 

equations are used to construct the control system through 

mathematical analysis to keep the pendulum in a vertically 

upright position. 

In this inverted pendulum, the pendulum has been pivoted on 

a movable cart (or Trolley) which can move along two rails. 

Therefore, Lagrangian of the pendulum system can be 

modelled using classical mechanical equations through the 

physical parameters (Table 1) of the pendulum system. The 

pendulum can move on x-y plane while the cart can only 

move in the x- direction as shown in the Figure 1. 

 

Figure 1. Inverted Pendulum System. 

Table 1. IP System Physical Parameters in Si Units. 

Parameters Explanations Value Units 

M Mass of the cart 0.48 kg 

m Mass of the pendulum 0.03 kg 

g Gravitational acceleration 9.8 ms-2 

b Friction Coefficient of the cart 0.01 kg/s 

p Damping Coefficient of the Pendulum 0.01 kg/s 

l Length to pendulum center of mass 0.3 m 

F Force applied to the cart F(t) kgms-2 

x Cart position coordinate x(t) m 

θ Pendulum angle from vertical θ(t) rad 

 

3.1. Classical Mechanical Approach 

The Lagrange of the system is defined to start the 

mathematical modeling process as, 

� � � � �                                   (1) 

Here, L is the Lagrangian of the system, T is the kinetic 

energy and V is the potential energy of the system. Then the 

Euler-Lagrangian equation can be defined as, 

�
�� �	


	�� 
 � 	

	� � �                               (2) 

Where, q is the coordinate system and the Q is the 

generalized force. 

All the forces which are acting on the inverted pendulum has 

been shown in the Figure 1. Frictional forces which are 

acting on the system are denoted in ���  and ��� . 

The kinetic energy of the system can be defined as, 

� � �
� ��� � �  �

� � �������
� � ������

� �                    (3) 

����� � � � � sin �                                 (4) 

����� � � cos �                                     (5) 

Then 4, 5 equations are differentiated with respect to time to 

substitute for the equation 3. 

������ � �� � ��� cos �                                 (6) 

������ � ���� sin �                                    (7) 

Then the equation 3 becomes, 

� � �
� �� � ���� � � ������ cos � � �

� ����� �             (8) 

The potential energy of this IP is, 
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� � �%� cos �                                  (9) 

Now using equations 1, 8 and 9, the Lagrangian of the IP can 

be obtained as, 

� = �
� �� + ���� � + ������ cos � + �

� ����� � − �%� cos �   (10) 

This system has two coordinates as x and θ. Each coordinate 

has an impact on the system. To analyze the system 

furthermore, Euler-Lagrangian equation is obtained for both 

coordinates as follows. 

Euler-Lagrangian Equation for x is, 

�
�� �	


	&�
 − 	

	& + ��� = '                          (11) 

�� + ���( + ��(� cos � − ���� � sin � + ��� = '        (12) 

Euler-Lagrangian Equation for θ is, 

�
�� �	


	)� 
 − 	

	) + ��� = 0                           (13) 

��(� cos � + ��(�� − �%� sin � + ��� = 0             (14) 

Equation 12 and 14 are 2
nd

 order non-linear differential 

equations. These equations are linearized in order to get a 

better understanding about the mathematical aspects and then 

the linearized model is used to construct the Kalman Filter to 

optimize the system performance by reducing sensor noises. 

Linearization process is started by assuming that sin � ≈  �, 

cos � ≈ 1 and �� � ≈ 0. This is possible since the angles are 

measured in radians and they are tiny angles. Then the 

resulting equations can be rewritten as, 

�( = -
�./0� − � 01

�./0�
 �( − 2
�./0� ��                (15) 

�( = �3
1 
 � − ��

1 
 �( − � �
01
 ��                     (16) 

3.2. Space State Model 

Now the equations 15 and 16 have been isolated from the 

trigonometric components. But still the equations are non-

linear differential equations. Therefore using space state 

modelling methods [7], the equations are linearized [14] for a 

new coordinate system. The new system coordinates are, 

�� = �                                  (17) 

��� =  �� =  ��                               (18) 

�� = ��                                    (19) 

��� =  �(                                    (20) 

�4 = �                                    (21) 

�4� =  � � =  �5                            (22) 

�5 = � �                                   (23) 

�5� =  �(                                    (24) 

' = 6�7�                                 (25) 

x1, x2, x3 and x4 are the new coordinate system introduced for 

a and θ. Therefore, x1, x2, x3 and x4 are substituted for the 

equation 15 and 16. Then the equations become, 

��� = 8
�./0� − � 01

�./0�
 �5� − 2
�./0� ��                (26) 

�5� = �3
1 
 �4 − ��

1 
 ��� − � �
01
 �5                     (27) 

But still both equations have differential terms in both sides 

of the equation. Therefore, these two equations are 

simultaneously solved to separate differential components in 

both of them. Then the resulting equations become much 

simpler and they are, 

��� = �8
.
 − � 2

.
 �� − �03
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 �4 + � �

.
 �5            (28) 

�5� = �3�./0�
.1 
 �4 − � 8

.1
 + � 2
.1
 �� − ���./0�

.01 
 �5   (29) 

Now the Space State Model is used to recapitulate all the 

above equations to interpret them in a mathematical manner. 

The space state model for linear time invariant system like 

this is, 

���7� = 9��7� + :6�7�                         (30) 

��7� = ;��7� + <6�7�                         (31) 

Where, x(t) – State Vector, y(t)–Output Vector, u(t) - Control/ 

Input Vector, A – State Matrix, B – Input Matrix, C – Output 

Matrix and D – Feed Forward Matrix. 

Hence, by the equations 17, 21, 28, and 29 the space state 

model can be modelled as, 
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The output matrix is, 
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3.3. Stability, Controllability and 
Observability 

Using the space state model of the system, the system 

STABILITY, CONTROLLABILITY and OBSERVABILITY 

is tested. This method is useful when a control system is 

constructed for a system. 

If the system is stable under open loop condition, then there is 

no need for a control system. This condition is tested using the 

matrix A of the space state system. If the system is stable, Eigen 

values of the matrix A should be less than or equal to zero. For 

this system, the condition for stability is violated. Therefore the 

system is unstable and a control system is needed. 

Then the controllability of the system is tested. This can be 

done by using matrix A and B. if the rank of controllability of 

the matrices A and B is a full rank, the system is consider to 

be a controllable system. Otherwise the system cannot be 

controlled using a control system. For IP system in this 

research, this rank is a full rank (rank is equal to the number 

of states). This test implies that the system is controllable. 

Sometimes all the parameters in the system wouldn’t be able 

to measure directly. In such cases the system parameters are 

given or defined inside the system. This is only possible if 

the system is observable. Therefore, the observability is 

tested using the matrices A and C of the system. If the rank of 

observability of the matrices A and C is a full rank, the 

system is said to be an observable system. Here the inverted 

pendulum is an observable system. 

3.4. Kalman Filter for Noise Reduction 

This system includes two digital rotary encoders for tracking 

the linear and angular motions of the system. But these signal 

consist of some noises and they have to be removed or 

reduced in order to construct a better control system. Kalman 

filter is widely used with control algorithms to reduce noises 

in signals in the fields of engineering and physics. In this 

case Kalman filter is used as a predictor corrector algorithm 

to get rid of noises in the system. Kalman filter gives the best 

prediction about the next state of the system. Equations of the 

Kalman filter is given below. 

�=/�|= � '=�= � ∇=6=                          (34) 

@=/�|= � '=@='=
A � �=                          (35) 

B=/� � CDEF|DGDEF
H

GDEFCDEF|DGDEF
H /IDEF

                     (36) 

�=/� � �=/� � B=/�JK= � L=�=/�|=M              (37) 

@=/� � �N � B=/�L=/��@=/�|=                   (38) 

In this mathematical model of the IP, the space state 

system is an analog system. But the control algorithm of 

the system is a discrete time model (Digital Systems are 

discrete time systems). Therefore the system has to be 

converted in to its discrete time model in order to 

implement on the microcontroller. This is also applied for 

the Kalman filter algorithm. Therefore the space state 

system of the IP is converted into its new discrete time 

model and hence the matrix A has become F, B has 

become  ∇  and C has become H. Q is the process noise 

covariance matrix and the R is the measurement noise 

covariance matrix. The notation k+1|k represent that the 

k+1 state is given by the previous state k. this Kalman 

filter process is performed before the sensor signals are 

fed to the control algorithm. 

3.5. Optimized PID Controller Design for 

Inverted Pendulum 

As the control algorithm, PID controller is used. Here two 

PID controllers are needed for the system to get the best 

performances. The reason is in this IP, two parameters are 

taken as linear position and the angle of the pendulum. 

Classical PID controller has been developed for the analog 

control systems. The well-known PID controller p(t) equation 

is shown below. 

��7� = OC × Q�7� + OR × S Q�7�T7�
U + OV × �����

��        (39) 

In the equation 39, kP, kI and kD are the proportional, integral 

and derivative gain constants respectively. e(t) is the error (or 

the deviation from the set point). 
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Figure 2. Basic block diagram of PID controller. 

This classical PID controller (see Figure 2) is an analog 

system. Therefore, this controller has to be converted into its 

discrete time form to implement on the microcontroller. The 

equation 39 can be re-defined for infinitesimal time period 

as, 

��7� � OC P Q�W� � OR P ∑ Q�W�T7�
U � OV P ����Y ���Y��

��  (40) 

Where e(n) is the error at n
th

 state. If, 

BC � OC, BR �  OR P T7 And  BV � =[
��  

��7� � BC P Q�W� � BR P ∑ Q�W��
U � BV P \Q�W� � Q�W � 1�]                                 (41) 

Then the final PID control equation can be constructed as in the equation 41. In this equation integrations and derivations have 

become simple additions and subtractions. Therefore it is less complex to implement on the microcontroller. 

But here two PID controllers have to be used. This two PID controllers can be construct as shown in the Figure 3. 

 

Figure 3. Two PID controllers are combined together. 

4. Implementation Procedure 

4.1. Construction of the Mechanical & 
Electronics System 

At the beginning, weights of necessary parts of the pendulum 

was measured. Then the mechanical system of the pendulum 

was constructed. In the constructed IP, two digital rotary 

encoders were used to track the angular and linear positions 

of the pendulum. The encoders have a resolution of 2400 

pulses per 2π angle. Therefore precision of the sensor was 

reliable. The pendulum was pivoted to the rotary encoder 

which was installed on the cart. The cart consist of two 

bearings which reduces the frictional forces. Two rails were 

used to set up the cart on them. 

As the electronic control system, ATMEGA 2560 

microcontroller [15] was selected. This microcontroller was 

selected due to its six external interrupt capabilities and the 

16MHz of clock speed. It was very useful for this project 

because two rotary encoders needed four external interrupt 

sensors to track the positions with a higher accuracy. To 

control the DC motor, H-bridge motor controller module was 

used. Motors are controlled through PWM (Pulse Width 

Modulation) Signals. Encoder data were taken from the real 

time data acquisition system implemented on the 

microcontroller program via serial communication to the 

computer. These data were used to analyze the system 

behavior with various PID gain parameters. Figure 4 shows 

the completed pendulum system. 

 

Figure 4. Inverted Pendulum after construction. 

4.2. Development of the Control Algorithm 

To develop the control algorithm, C language was used. C 

language has several advantages over most of the other 

computer languages. Especially when we are dealing with 

embedded technologies, C language is used due to its 

mesmerizing performances. The platform used for the 
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programming was Arduino IDE which is an open source 

embedded programming package. Following shows (See 

Figure 5) the flow chart of the developed computer algorithm 

on the microcontroller. 

 

Figure 5. Flow Chart of the Control algorithm. 

Then the PID algorithm with the Kalman state predictor was 

implemented on the program and then the program was burnt 

into the microcontroller. 

4.3. Tuning Of PID Gain Constants 

Tuning of the PID gain constants was the difficult part here. 

The reason is this process was done through trial and error 

approach. As the first gain constant, proportional gain 

constant of the angular position PID controller, KP was 

adjusted and output of the system was tested. This adjustment 

process had to be performed until the system get comfortable. 

After the KP gain was tuned, KI gain was chosen as the next 

parameter. This was selected due to a reason. After the KP 

gain was properly tuned, the IP had a lot of oscillations. 

These oscillations were gradually increased with the time. To 

overcome this problem the best selection is the KI gain 

because, when the error is increased, integration part of the 

PID controller dominates the control effect on the system. 

Then the KI gain constant was adjusted until the system get 

stable. But there were some oscillations in the IP system. To 

reduce those oscillations, KD gain was adjusted and finally 

the system got stable. After these adjustments the IP was 

almost stable. 

But the problem was the pendulum could be balanced 

anywhere in between the rails. But it was necessary to keep 

the pendulum at the middle of the rails. So the next task was 

to tune the PID parameters in the linear position PID 

controller. Again the tuning process was started with the KP 

of the linear position PID controller. Then the system was 

balanced at the middle of the rails. But there were some 

oscillations and it was an unwanted disturbance to the 

pendulum. Those oscillations were very close to the middle 

point of the rails. In this case the best choice is to select the 

KD gain. The reason was at this point the error was not 

gradually increased with time. Instead the error was slightly 

smaller than the previous oscillations and most likely to be a 

constant error. Therefore the effect of the KI gain is very 

small on the system. So the best gain parameter was the KD 

gain. This was also affected to the system oscillations, hence 

damped the oscillations of the system. After adjusting the KD 

parameter, the system was almost stable and there were only 

few oscillations around the set points (x = 0 and θ = 180
0
) of 

the IP system (see Figure 5). 

5. Results and Observations 

5.1. Final Outcome of the IP System 

After all necessary adjustments, the IP was balanced 

autonomously by itself and it could manage external 

disturbances automatically. The balanced IP is shown in 

Figure 6. This was the main objective of the research. The 

analytical study of the IP was done by using the data taken 

through the real time data acquisition system to the computer. 

This analyze was performed considering a specific time 
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period in which all the behaviors of the IP corresponding to 

each PID parameter could be analyzed. 

 

Figure 6. Balanced Inverted Pendulum based on PID Controller. 

5.2. Analytical Representations of the Data 
of the Inverted Pendulum 

In this scenario, mainly consider about the data coming from 

the angle encoder. This is done because the stability of the 

system technically depend on the angle of the pendulum. 

Inside the microcontroller program, a terminator point (see 

Figure 5) had to be defied to protect the system by damaging 

itself due to highly unstable situations. These unstable 

behaviors are represented in the following graphs along with 

the final stable desired state. The data acquisition system was 

designed to send the raw encoder positions instead of the 

converted angles. This is possible because of the proportional 

relationship between angle and the encoder values. Therefore 

the corresponding value of the encoder for π angle (set point 

for the angle PID) is 1200 pulses. 

 

Figure 7. The graph of Error vs. sampling time when KP = 18, KI = 0 & KD 

= 0 and all linear PID constant are zero. 

 

Figure 8. The graph of Error vs. sampling time when KP = 18, KI = 0 & KD 

= 50 and all linear PID constant are zero. 

 

Figure 9. The graph of Error vs. sampling time when KP = 18, KI = 0.05 & 

KD = 50 and all linear PID constant are zero. 

In the above graphs (Figure 7 to 9), only the angle PID 

controller was involved. According to the graph in Figure 7, 

KP of angle PID controller equals to 18. At this point it was 

stable for a moment but after few milliseconds the system got 

unstable and collapsed. 

Then the KD was introduced to the PID controller (Figure 8) 

and even with effect of derivative gain KD, the system could 

not keep its balance. But in this case, it was stable for a very 

small time period which was longer than the previous case 

(Figure 7). 

Finally, all gain constants including KI of the angle PID were 

set to their optimum values and the system was very stable 

(Figure 9). At this point the pendulum was balanced at the 

vertical upright position. However, the balanced position on 

the rails was not accurate. Therefore, the linear position PID 

controller had to be involved for balancing the pendulum at 

the middle of the rails. 



 International Journal of Automation, Control and Intelligent Systems Vol. 4, No. 4, 2018, pp. 43-53 51 

 

Figure 10 shows the final balanced inverted pendulum with 

the effect of both PID controllers. Here the pendulum was 

stable around the middle set point of the rails. However, 

some small oscillations were there. But the system gave the 

expected behavior by reacting to external disturbances and 

keeping pendulum vertically upright. In this stage, even for 

an intentionally made impacts on the pendulum, the 

pendulum always tried to keep the pendulum upright while 

trying to reach to the middle of the rails. 

 

Figure 10. The graph of Error vs. sampling time when KP = 18, KI = 0.05 & 

KD = 50 and Linear KP = 0.002, Linear KI = 0.0005. 

This pendulum can also be used to contrast the PID controller 

effect on the pendulum stability. This experiment was 

performed on the balanced pendulum system by introducing 

new values for KP of the angle PID controller while keeping 

all the other PID gain parameters unchanged. Here, the effect 

of the KP gain is demonstrated in the Figure 11 and 12. 

 

Figure 11. The graph of Error vs. sampling time when KP(angle) = 1. 

 

Figure 12. The graph of Error vs. sampling time when KP(angle) = 100. 

In the Figure 11 and Figure 12, the KP(angle) was set to 1 and 

100 respectively. But for both values the system was not stable 

as in the Figure 10 with KP(angle) = 18. This result can be used to 

clearly distinguish the behavior of the pendulum with high KP 

values and low KP values. According to the Figure 12, even 

though the KP is high the system could not keep its stability. 

But it has given far better performance than the low KP gain 

(Figure 11). However, both systems have eventually collapsed 

by losing the stability of the pendulum. This implies that the 

correct gain parameters can be obtained by selecting two initial 

guesses like one as small value and the other as a larger value. 

This will help to reduce the number of trials and narrow down 

the value range for corresponding gain parameter. 

6. Discussions 

Under this study of the inverted pendulum, mainly focused 

on the PID controller implementation on a microcontroller 

program. But this kind of control algorithms need higher 

processing power to execute the program. The reason is error 

optimizations and state predictors take a long time to execute 

due to their mathematical calculations with floating point 

numbers. But this complexity can be overcome by limiting 

the number of decimal points up to two in the values by using 

round off methods. Especially, the C language also 

contributes to the execution speed. 

Hardcore part of the study was the tuning process of the PID 

parameters of two PID controllers of the program. But the 

complexity of tuning process can be decreased by selecting 

PID gain constants wisely. Here the idea of this wisely chosen 

values is, for an example, the tuning process can be started 

with KP = 1 and if the system seems to be stable then a larger 

value can be selected and checked whether the system is stable 

or not. If the system seems to be stable, which implies the best 

value for this gain parameter definitely lie in between 1 and the 
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second-guessed larger value. However, it is not necessary to 

start with 1. But choosing one as the initial guess, there is a 

higher possibility to get a better idea about the tuning process. 

If the system is unstable at KP = 1 and even higher values 

larger than 1, which implies that the KP might be less than 1. 

This method is not limited for proportional gain. It can also be 

applied for the other two gain constants too. 

The Kalman filter was used to optimize the error in the 

system. Data coming from the rotary encoders are not analog 

signals. Which means they are discrete values. Therefore, the 

Kalman predictor corrector algorithm used in this program 

increases the smoothness of the data which is fed to the PID 

controller. Due to this reason most of the unwanted 

oscillations could be decreased in the inverted pendulum. 

7. Conclusions 

The proposed model for balancing of an inverted pendulum 

was based on the PID controllers. By using Kalman filter 

along with PID controllers, unnecessary noise signals and 

discretization of the data can be reduced and the errors of the 

system can be optimized to obtain the desired state from the 

system. This microcontroller-based control algorithm gave 

the desired stability from the system and the inverted 

pendulum could manage most of the intentionally made 

disturbances too. Effectiveness and the efficiency of the 

developed PID controller was far better than expected. The 

concept of this research can be extended up to three 

dimensional inverted pendulums. PID based control 

algorithms are cheap but reliable. Therefore, this controlling 

method can be used with self-balancing robots, unmanned 

airplanes (quad copters) and even for missile guidance 

systems with lower computational power due to the 

simplicity of the PID controllers. Especially, PID based 

controllers are recommended to use with low power 

computer systems such as microcontrollers. 

Data Availability 

The data that support the findings of this study are openly 
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