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Abstract
Binary descriptors have been widely used for real-time image retrieval and correspondence matching. However, most of the 
learned descriptors are obtained using a large deep neural network (DNN) with several million parameters, and the learned 
binary codes are generally not invariant to many geometrical variances which is crucial for accurate correspondence matching. 
To address this problem, we proposed a new learning approach using a lightweight DNN architecture via a slack of multiple 
multilayer perceptions based on the network in network (N1N) architecture, and a restricted Boltzmann machine (RBM). The 
latter is used for mapping the features to binary codes, and carry out the geometrically invariant correspondence matching 
task. Our experimental results on several benchmark datasets (e.g., Brown, Oxford, Paris, INRIA Holidays, RomcPatchcs, 
IIPatches, and CIFAR-10) show that the proposed approach produces the learned binary descriptor that outperforms other 
baseline self-su per vised binary descriptors in terms of correspondence matching despite the smaller size of its DNN. Most 
importantly, the proposed approach does not freeze the features that are obtained while pre-training the N1N model. Instead, it 
line tunes the features while learning the features needed for binary mapping through the RBM. Additionally, its lightweight 
architecture makes it suitable for resource-constrained devices.

Keywords Binary descriptor • Network-in-network • Restricted Boltzmann machine • Correspondence matching • 
Lightweight deep neural network

1 Introduction the most essential and discriminative information from an 
image while being robust to various geometrical transforma­
tion such as rotation and scaling [4, 7]. Furthermore, recent 
studies have focused on highly efficient descriptors designed 
to enable visual data to be retrieved quickly from extensive 
archives of images and videos [4].

Throughout the past decade, many feature descriptors 
have been handcrafted or learned through various machine 
learning approaches in attempts to improve their discrimina­
tive power, robustness, and efficiency. Among these descrip­
tors, the SIFT [8] and SURF [9] descriptors arc the most 
widely explored. Convolutional neural networks (CNNs) 
were another milestone in the history of feature descriptors. 
CNNs learn optimal features effectively to classify the input 
among a given set of classes 1101. CNNs can accurately map 
a raw image to the most closely related labels available in 
the network [ 11 j. However, the learning of intermediate rep­
resentation of images that is also known as image descrip­
tor, without going into the classification step, is still vital 
for some computer vision tasks, such as one-shot learning 
and correspondence matching [12, 13]. Hence, this study

Because v isual data, such as images and videos, have a high 
density, their dimensionality must be reduced via feature 
extraction so that the abstract representation of the data can 
be formed, thus allowing computers to understand them 
11-4J. Most computer vision tasks—including scene clas­
sification, object recognition, image stitching, and 3D recon­
struction-—use feature extraction as a preliminary step [5, 6], 
The primary purpose of any feature descriptor is to extract
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focuses on deriving an image descriptor for correspondence 
matching task with mainly concerning the clticicncy and 
robustness.

Both SIFT and SURF suffer f rom high computational cost 
and high dimensionality, which negatively affect the speed 
of matching 114-16}. Moreover, image matching is a compu­
tationally expensive task due to the real-valued descriptors, 
which require high-precision floating-point operations [5. 
1?. 16). The problems of dimensionality and computational 
expensiveness have been addressed by the proposition of 
several binary descriptors, such as BRIEF (16|, ORB 1I5|, 
BRISK ]5|. and FREAK f 171. Binary descriptors perform 
storing and matching tasks very efficiently due to their com­
pactness and Hamming distance-based similarity measure­
ment. Calculation of Hamming distance requires only a few 
bitwise operations: hence, binary descriptors are preferred 
for real-time image matching tasks 115], However, most of 
these descriptors arc sensitive to scale, orientation, illumi­
nation. and image noise due to the presence of handcrafted 
features that arise from the use of simple intensity compari­
son techniques. [18-21] propose several improvements to 
the binary description. The key component that is common 
to all these studies is the use of learning algorithms to learn 
encoding schemes to transform similar information to simi­
lar binary codes. The approaches used in [22-25] arc based 
on feature learning through deep neural networks (DNNs), 
which typically involve the optimization of many param­
eters during the learning phase. DNNs also perform many 
arithmetic operations during the infercncing phase. Hence, 
computations involved in DNNs are expensive. Further, 
these descriptors are less rotationally invariant than other 
descriptors because they use linear convolutional filters and 
learn the encoding scheme based on pre-learned and frozen 
features that cannot be adopted for drastic variations in rota­
tion 113. 26). Although these descriptors arc relatively easy 
to train, they are usually limited by features that arc not. opti­
mal for binary encoding. The approaches in [ 18, 19, 27-291 
focus on learning the optimal features for binary encoding. 
However, their use is limited due to supervised learning, 
which cannot be applied in the absence of annotated data.

In this paper, wc propose a lightweight DNN architecture 
for learning compact binary descriptor to carry out image 
correspondence matching tasks. In the proposed DNN, a 
Gaussian-Bcrnoulli restricted Boltzmann machine (RBM) 
[30] is used to learn binary codes from the features extracted 
from a network-in-network (NIN) [31] DNN model. The 
stack of multiple multilayer perccptrons (MLPs), that is 
used in NIN, makes it extremely compact and efficient in 
feature extraction. RBM is a generative network that can 
learn a mapping between two distributions without supervi­
sion. RBMs are extremely small due to their single-layer 
architecture. A well-trained RBM can reconstruct the input 
(from the visible layer) that corresponds to a given output (to

the hidden layer). In addition to the inherent compactness of 
the DNN architecture, a notable advantage of the proposed 
method is that it learns discriminative compact binary codes 
by optimizing both the “feature-to-binary mapping function" 
and "feature extraction" in a new learning approach. The 
objective of the new learning approach is to reduce the vari 
ation among the features extracted lor different orientations 
of the same image patch. A conventional learning approach 
cannot be used to train this NIN RBM hybrid network. This 
is mainly because of the incompatible learning approaches 
used in the different parts of the network. Therefore, in the 
proposed learning approach, first, the two parts learned 
individually then the deep layers of the NIN update their 
parameters by baekpropagating the error between its output 
features and the reconstructed inputs of the RBM from an 
estimated target. This is in contrast to conventional learning 
approaches, which update parameters by baekpropagating 
the error between the outputs and the provided targets. The 
efficiency and effectiveness of the proposed DNN model are 
demonstrated by employing it in correspondence matching 
tasks using several benchmark datasets. The next section 
describes related works that have been used to derive the 
proposed DNN architecture and for comparison purposes.

2 Related works

The primary purpose of a syntactic visual feature is to 
abstract visual data while keeping enough discriminative 
information for accurate matching. In the recent past, the 
main concern surrounding local visual feature descriptors 
has been their matching accuracy. Ilcncc. such descriptors 
have been advanced from handcrafted feature descriptors 
(namely, HOG [32] and SIFT [8]) to deep learned features 
(namely, CKN-grad [331, MatchNct |25|, GcoDcsc |34[, 
SOSNct [351, SKAR [36|, and DccpComparc |22|) without 
consideration being given to their computational cost and 
efficiency.

Efficient descriptors The interest in efficient visual 
descriptors has risen with the achievement of several highly 
discriminative feature descriptors such as HOG 132) and 
SIFT [81. Specifically, their inability to be used in real-time 
applications has received attention. There arc several studies 
available regarding this inability and the history of improve­
ments regarding efficiency. Such studies have used SURF 
[91, compact dither pattern code (CDPC) [4], and salient 
dither patlcrn feature (SDPF) [7, 371 descriptors. The com­
mon goal of these descriptors is to reduce the dimensionality 
of the descriptor and to speed up the feature extraction task 
to improve the efficiency of the overall process. However, 
real-valued descriptors suffer from a performance bottleneck 
during similarity matching. Ilcncc. binary descriptors arc 
more favorable for real-time applications.



Binary descriptors Several binary descriptors have been 
introduced to prevent the pertorm.mcc bottleneck that can 
occur in real valued descriptor matching tasks. BRIEF 1I6j. 
ORB | |.S|. BRISK |.S|. and FRF AK 117] are the most com­
monly explored binary descriptors and have been used in 
many real-time applications. These descriptors are efficient 
in the extraction and matching phases. However, due to the 
overly simplified pairwise pixel matching process used to 
construct binary codes, these descriptors are not very robust 
when dealing with various geometric transformations 1131.

Several recent studies have shown that this problem can 
be solved by using machine learning instead of handcrafting 
the binary descriptors, Lor example. LDAHash 1281 finds 
a projection that is designed to simultaneously minimize 
covariance within the class and maximize covariance across 
classes while performing additional work to finding an opti­
mal threshold for binarizing the projection. D-BR1EF 127] 
uses BRIEF 116] on a highly discriminant subspace learned 
from the input image patches using linear discriminant 
analysis (LDA) (28]. which is quite similar to LDAHash. 
The latter approach involves the construction of a projec­
tion method based on box filters calculated on integral 
images. Applying box filters to integral images is fast but 
not especially capable of dealing with rotation. RFD [19], 
local difference binary (LDB) [38], and BinBoost [39] use 
AduBoost to learn a binary encoding scheme. LDB focuses 
on selecting the optimal sampling pairs, whereas BinBoost 
jointly optimizes the feature weighting and pooling strategy 
of each bit using AdaBoost to obtain highly compact and 
accurate binary descriptors. RFD learns a binary descrip­
tor in a similar way to BinBoost, with a slight difference 
that the RI D selects receptive iields one by one for each 
bit. whereas BinBoost uses a linear combination of basic 
elements to form the whole descriptor. Although RFD and 
BinBoost have been associated with better performance than 
many existing binary descriptors, the large number of weak 
classifiers involved in the computing of each bit makes the 
computation time required for these descriptors highly unfa­
vorable 139].

Unsupervised or self-supervised hashing algorithms, such 
as locality sensitive hashing (LSH) 140], semantic hashing 
(Sll) |4!J, and DccpBit |13|. learn binary representation 
by minimizing the error between the input and the recon­
structed image from the learned binary codes. DccpBit 
learns binary codes based on the features extracted from a 
pre-trained VGGI6 |42|. This learning process is completed 
by optimizing for three objectives to achieve invariance to 
transformation, an even distribution, and minimal quantiza­
tion loss. SI I learns binary hash codes for documents by 
using multilayer RBM, which acts as both a feature extractor 
and a method for the binary code mapping function. These 
descriptors are better when no annotated dataset is available,

though they do not outperform state-of-the-art supervised 
methods.

Deep learning Deep learning enables a set of rich features 
to be learned based on an extensive collection of images to 
construct a classifier across many classes. CNN learns the 
weights of a set of convolution fillers and the fully connected 
layers from a gradient descent algorithm. Many state-of- 
the-art binary descriptors, including DccpBit |13], DSH 
[43], CNNII (44J, Binary L2-Nct |29], and DNNII |45J, 
are learned by replacing the last fully connected layers of 
some well-performed CNN models (c.g., VGG16) with a 
fcature-to-binary code mapping layer, CNN is less capable 
of dealing with rotation, and it is hard to avoid overfilling 
when using CNN 113, 31 ].

NIN Unlike CNN, NIN uses multiple MLPs instead of 
linear fillers to learn deep features. It also uses a global 
average instead of a fully connected layer for classifica­
tion purpose. The study in [31] reports that the nonlinear 
function approximators in NIN can achieve the abstraction 
ability of the generalized linear models used in CNN while 
requiring fewer parameters [10]. The concept of having fully 
connected layers at the feature extraction segment of NIN 
has inspired the bottleneck design of ResNct [46] and the 
inception model [47]. Although the bottleneck design and 
inception model outperform NIN in image classification 
tasks, the compactness of all three models is comparable. 
There are fewer than 20 million FLOPs in the original imple­
mentation of NIN, whereas the baseline models of the other 
two contain more than 3 billion FLOPs [46]. Because of the 
compactness and the great abstraction ability of NIN, it is 
used as the feature extractor in our approach. The feature 
description is then achieved by using an RBM.

RBM RBM is a single-layer neural network which typi­
cally uses contrast divergence algorithm to learn a mapping 
between two Bernoulli distributions [30]. It has been later 
adapted to learn the mapping between Gaussian and Ber­
noulli distributions which enables representing a distribution 
of real values using a distribution of binary values. Moreo­
ver, RBM can be trained without supervision; hence, it has 
been chosen to obtain a binary descriptor in this study.

In summary, the existing local descriptors can be broadly 
classified into either real-valued or binary. Binary descrip­
tors can be further classified into handcrafted, supervised, 
and unsupervised (or self-supervised) learned descriptors. 
The method proposed in the present work falls into the 
self-supervised learning-based binary descriptor category, 
which is advantageous when fast computation time is criti­
cal, and no annotated data arc available. Using several public 
benchmark datasets, we will show that the proposed method, 
that is based on NIN and RBM, achieves comparable per­
formance to state-of-the-art descriptors in correspondence 
matching tasks.



3 Proposed approach feature learning. Second, we describe the approach used to 
train the RBM. Third, we present the met hod used to gener 
ate the representative code. Finally, we explain how NIN is 
line-tuned.

In this section, we first explain the proposed DNN architec­
ture and then describe the details of each section of the DNN 
as well as the novel learning approach. The proposed DNN 
has two main parts, namely the NIN and RBM. The NIN and 
RBM arc used for learning invariant features and feature* 
to-binary code mapping, respectively. We propose a new 
learning approach that both enables the learning of invari­
ant features and reduces the intraclass variance among the 
binary codes. First, the NIN is initialized with the weights 
obtained, while it is trained for general image classification 
purposes using backpropagation with stochastic gradient 
descent (SGD). Then, the classification layer of the NIN 
is replaced by a local average layer to transpose the fea­
tures extracted from the NIN to the input layer of the RBM. 
Finally, the DNN is trained in three different sessions, as 
follows:

3.1 Training the NIN model

'The NIN model differs from conventional CNN models 
in that the NIN model uses micro neural networks that arc 
located inside each convolution layer, namely mlpeonv. The 
study of NIN in 1311 shows that a few layers of mlpeonv 
can achieve a level of performance similar to that of a con 
veutional CNN with signilieantly more model parameters. 
Nevertheless, [311 has mentioned that the NIN can still he 
trained by applying the generic backpropagation algorithm 
via an annotated image dataset.

Figure 2 shows the NIN model used in the proposed 
method. It contains only four convolutional layers, each of 
which consists of a multilayer perception and a max-pooling 
layer. This model is remarkably smaller than most conven­
tional CNNs, including those mentioned in (10. 421. This 
feature enables the NIN to learn an extremely compact set 
of features. The NIN model uses a global average layer at 
the end of the network to output the class label as given 
in [31] while in training, but this global average layer is 
later replaced by a local average pooling layer. Global aver­
age pooling is beneficial when obtaining class labels, but 
it is immensely destructive, making the detailed feature 
map inaccessible. Meanwhile, local average pooling is less 
destructive than global average pooling and reduces dimen­
sionality by down sampling the feature map.

We use local average pooling instead of maximum 
pooling, which is typically recommended in conventional 
CNNs 110] because local average pooling preserves the 
noil-maximal features that contribute to the final classifica­
tion. However, as with traditional CNNs, the NIN model 
learns features using a set of convolutional layers, but each 
of these layers consists of MLP layers with rectified linear 
unit (RcLU) activation. Given a convolutional response .\t j

(1) Training the RBM to obtain a map between the NIN 
features of image patches to a set of binary codes using 
a contrast divergence (CD) algorithm.

(2) calculating a representative binary code from the binary 
codes obtained for the set of geometrically augmented 
inputs of a single patch, and

(3) fine-tuning the NTN with the geometrically augmented 
image patches using backpropagation with SGD. The 
fine-tuning of the NIN and the RBM is repealed alter­
natively.

Figure 1 shows the proposed DNN architecture and 
the overall learning approach. It consists of two sections 
that correspond to the training and fine-tuning processes. 
The training section shows how the RBM is trained with 
the outputs of the NTN. the method for generating binary 
codes, and the representative code. The fine-tuning section 
shows how the representative code is then used to fine-tune 
the features in the NTN. In the following sections, we first 
explain how the initial training of the NIN is executed for

Fig. 1 The proposed DNN 
architecture with the learning 
approach
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of the input patch centered at location (/,./), the output can 
be obtained by using (1),

p(hj = 1|a) = sigm(U//-.A + bj) (2)

where p(hj = 1 |jt) is the probability of being the jth hidden 
unit, 1, given the input feature map; x, Wj is theyth row of the 
weight matrix; bj is the bias of the Ah neuron in the hidden 
layer; and sigm is the sigmoid function. The reconstruction 
process can be accomplished by (3),

p(xk\h) = Wk.h + ck

where p(xk\h) is the probability of the kth visible unit given 
the value vector, It, at the hidden units; Wk is the kih column 
of the weight matrix; and ck is the bias of the A'th neuron in 
the visible layer. We employ stochastic gradient descent on 
contrastive divergence with a single step of Gibbs sampling 
(CD-I) in the initial training of the RBM to reduce the train­
ing time. The fine-tuning phase of the RBM uses five steps 
of Gibbs sampling (CD-5) to estimate the least biased nega­
tive samples at a much lower learning rate. The parameters 
of the RBM arc updated according to (4), (5), and (6),

W = W + a(h(x)xT - h(x)xT)

K^ + 'V o)

Kcl+v°)

/ - max; •

J?JK (1)max

(3)where n is the number of layers, w is the weight vector, b is 
the bias, and k is used to index the channels of the feature 
map. Then, ihe global average pooling is obtained from f‘\k. 
In the proposed work, the NIN model consists of four mlp- 
conv layers, each of which has a convolution layer, followed 
by Rel.l' activated MLPs. The outputs of the first three mlp- 
conv layers arc subsampled by applying the max pool opera­
tion. The network is trained with a stochastic gradient 
descent algorithm (SGD) with cross-entropy loss as speci­
fied in (31 J. Wc used a large image dataset with class labels 
to train the NJN network. Once the training was converged, 
the global average pooling layer of the NIN was replaced 
with the local average pooling layer. Then the output was 
directed to the input layer of the RBM. In the next phase of 
the training, wc temporarily froze the NIN model and then 
used the output of the NIN to train the RBM.

(4)

b = b + u(h(x) - h(x)) (5)

C = C + (t{x - a )

where a is the learning rate, x is an example training feature 
map, x is the negative sample estimated using Gibbs sam­
pling, and the function h(x) is given in (7),

h(x) = .vigm(W.A + b)

The training of the RBM uses the image patches in 
their upright position without using any augmentation. 
Note that the RBM learns fcaturc-to-binary mapping 
without any supervision. Hence, different orientations 
and other visual variances of the same image patch may

(6)

3.2 Training the RBM

A Gaussian-Bernoulli RBM is a generative stochastic neural 
network that can map a Gaussian probability distribution to 
a Bernoulli distribution via unsupervised learning over a set 
of inputs. An RBM is used in the proposed work to obtain a 
compact binary code for the mlpconv extracted for an input 
image patch. The RBM used in the proposed approach takes 
the real-valued feature map from the NIN model as the input 
to calculate the values at the hidden unit using (2),

(7)



be converted into a set of binary axles that might not be 
close enough in terms of Hamming distance to result in 
better matching. This property can cause the true positive 
rale to decrease, as our objective is to produce a set of 
binary codes with the lowest possible intraclass variance 
in hamming space despite the presence of geometric vari­
ations. This problem is overcome by calculating a repre­
sentative code for the set of codes belonging to the same 
patch, which is then used to fine-tune the NIN.

3.4 Fine-tuning the NIN model

The NIN model uses MLI\ which is a universal function 
approximator used to learn features. Ilcnce. the model is 
potent in terms of learning optimal features for binary cod 
ing. The features are line-tuned as a means of reducing the 
variation among the binary codes within different orienta­
tions and the shifting of the same image patch. An optimal 
target from among the inputs should be calculated accord 
ingly. For example, if wc input several geometrically trims 
formed variants of a single image patch, the outputs of the 
NIN should be similar. Also, they should generate almost 
similar binary codes through the RBM. The new target for 
the inputs can be generated by reconstructing the feature 
map /' by giving the representative code II1 to the RBM 
using (9),

fl = Wk.H' + ck

Note that x in (4). (5), and (6) is obtained from (9) by 
using a generated binary code instead of If'. This implies 
that the training of RBM converges if a =.y. However, 
if a properly trained RBM is fed an input like the recon­
structed input from a binary code, then it can be expected 
to generate a binary code similar to the one that is used for 
reconstruction.

The RBM is temporarily detached from the DNN model, 
and the parameters of the NIN are fine-tuned using fj as 
the target of the augmented patches from the original image 
patch, /, within the training batch. The optimization process 
uses SGD with mean square error (L2 loss) at a very low 
learning rate. This fine-tuning process considers the differ­
ent augmented inputs of a patch to produce a very similar 
feature map, which is then converted into very similar binary 
codes by the RBM.

Once the NIN has been fine-tuned, the RBM is integrated 
into the model and fine-tuned with contrast divergence as 
explained in Sect. 3.2 with five steps of Gibbs sampling 
(CD-5). The repetitious fine-tuning of the NIN and RBM 
parts of the model is computationally expensive. Hence, vve 
empirically terminate the learning process once the CD-5 is 
converged. Note that, at this point, both the NIN and RBM 
parts of the network arc trained and have undergone at least 
one fine-tuning process. The following section provides the 
details of the implementation and the parameters used in the 
DNN and the learning approach.

3.3 Calculating the representative code

Existing deep learning-based binary descriptors proposed 
in 113. 26. 481 learn binary hashing on frozen convolu­
tional features. Differently, the proposed method learns 
binary hashing on a Gaussian-Bcrnoulli RBM while 
periodically fine-tuning the nonlinear features in the NIN 
using backpropagation. The fine-tuning process involves 
the calculation of a representative binary code, which rep­
resents the “patch” itself in the correspondence match­
ing task. This calculation begins by inputting a set of 
geometrically augmented versions of an image patch into 
the DNN model and collecting the resulting set of binary 
codes. Augmentation is performed by the rotation and 
random cropping of each of the input image patches. The 
representative code for the collection of binary codes is 
obtained by (8),

i n,‘ > |/|/2
0 otherwise

(9)

II1 (8)

w here H'. is the value of the jth position in the representative 
binary code of the image patch, /; h1. is the value of the /th 
position in a binary code obtained for an augmented sample 
of the patch. /: and |/| is the number of augmented samples 
obtained for the image patch, /, within the batch. The result 
of H1. can be expressed as the mode of the all //j values within 
the batch. Therefore, the meaning of H1 can be interpreted 
as the centroid of the distribution of the binary codes gener­
ated for different augmentations of the image patch, /, in the 
Hamming space. Note that the centroid binary code always 
provides the lowest sum of Hamming distances from the 
centroid itself to each of the binary codes in the distribution. 
Therefore, forcing the NIN model to produce a feature map 
that is expected to yield a binary code that is closer to the 
centroid should provide less error during the matching 
phase. This is done by fine-tuning the weights of the NIN to 
produce a feature map. This process is similar to the RBM 
reconstruction for the representative code. The next subsec­
tion explains the method used for fine-tuning the NIN model.

3.5 Implementation details

Wc implement the proposed approach using the Tensor- 
Flow [49j library. The proposed NIN model consists of four 
mlpconv layers, and the initial training process has been



completed using ihe I mage.Net dataset. Images are normal­
ized to the size ol 36 x 36 and then randomly cropped \v hile 
preparing the model lor the correspondence matching task. 
The number ot dimensions of the features obtained from 
the NIN model is reduced to 3072 using local average pool­
ing. We use random mini batches of a size of 128 for this 
purpose, The initial training ot the RBM uses a learning rate 
ol 0.001 and a momentum of 0.95 via the CD-I learning 
algorithm 1 he hoe-liming of the NIN model uses a learning 
rate ot 0 00001 and a momentum of 0.9. The line-tuning of 
ihe ROM uses a learning rate of 0.00001 and a momentum 
of 0.95 via the CD-5 learning algorithm. The line-tuning 
phase of the RBM involves the preparation of 71 rotated, 
10 randomly sealed, and 10 randomly shifted images for 
each image patch in the dataset. The rotation is completed in 
increments of 5 degrees, the sealing factor ranges from 0.8 
to 1.2. and the shifting range is between -5 and 5 pixels. We 
select these parameters empirically, and the performance of 
the model may be improved by optimizing them for specific 
applications.

matching process is evaluated using Oxford |5I|, Paris 
1521. INRIA Holidays |53|, Brown (54|, RomePatches 
[331, and HPaiehcs |55| datasets. Further, we use random 
images from the C1FAR-I0 |5b| dataset to evaluate com­
putational efficiency. We briefly describe the datasets used 
for the experiments in this section.

ImageNct ILSVRC20I2 |50| contains around 1.2 million 
images for training, 50,000 for validation, and I()(),()()() for 
testing in 1000 different object categories. The large number 
of hand-annotated images in this dataset enables the learning 
and generalizing features of the NIN.

The Brown |54] dataset contains a total of 1.2 million 
images that arc collected from three landmarks: Liberty, 
Notre Dame, and Yoscmitc. Each of these three subsets 
includes significantly different views of the corresponding 
landmark. Each subset consists of more than 400,000 gray­
scale image patches, which are split into 200,000 training 
pairs and 100,000 test pairs. Note that exactly half of each 
set comprises matching pairs, while the other half makes up 
the set of non-matching pairs. This dataset has been widely 
used in evaluations of local descriptors. We use all combina­
tions of cross-category training and testing configurations 
of patches from this dataset, thus enabling us to compare 
the generality of different binary descriptors. Generality is 
a significant concern in any self-supervised DNN, which 
makes the descriptor an ideal choice in a variety of applica­
tion domains without requiring retraining.

The Brown dataset consists of only grayscale image 
patches and, thus, does not indicate a model’s performance 
in the presence of colors. Hence, the RomePatches [33J data­
set is also used. The RomePatches dataset consists of 20,000 
local color image patches collected from several landmarks 
in Rome. Each of the training and test sets contains a set of 
1000 patches, and each patch has 10 different views. This 
dataset is used for comparing models’ utilization of color 
information for patch matching in the presence of slight geo­
metric variance.

The Oxford [51] dataset contains a total of 5062 images 
of 11 Oxford landmarks, and the Paris 1521 dataset includes 
a total of 6412 images of 11 Paris landmarks. The images 
within the classes of both datasets vary in terms of the scale 
and viewpoint. These two datasets arc used to compare the 
performance of correspondence matching in the presence 
of drastic geometric variance. Comparisons are made when 
using the Oxford and Paris datasets by selecting 5 and 55 
random query images from each landmark, respectively.

The INRIA Holidays [53] dataset contains a total of 
1491 images from 500 categories, each of which represents 
a distinct scene or object. The images within each category 
vary by illumination, blurring, scale, and viewpoint. These 
variations allow comparisons to be made between models’ 
correspondence matching abilities in complicated cases. The 
evaluation uses 500 query images. All these datasets are

4 Experiment

An effective binary descriptor should have several essential 
characteristics, namely low dimensionality, accurate match­
ing abilities, invariance to different geometrical variances, 
robustness, and high computational efficiency. Therefore, 
the proposed DNN architecture combined with the new 
learning approach is evaluated for visual correspondence 
matching under extreme variations in geometrical transfor­
mation and tor computation efficiency. We use several public 
datasets that contain different challenging properties men­
tioned above. The task of correspondence matching is eval­
uated by directly matching the image patches provided in 
patch based datasets and using the performance of instance 
retrieval, which is an application of correspondence match­
ing. Patch similarity is obtained by using the Hamming 
distance between a pair of binary descriptors. We evaluate 
the robustness of the proposed DNN by applying it to both 
the grayscale and color image patches. The computational 
efficiency of the DNN is assessed based on two factors: the 
size of the model and the feature extraction time. The size of 
the model typically affects the initialization time, compula­
tion time, and memory requirements, whereas the feature 
extraction time significantly affects the speed of the overall 
matching process.

4.1 Datasets

We use the ImageNct 1LSVRC2012 [50] dataset, which 
consists of several millions of images, for the initial 
training of the NIN model. The visual correspondence



used to evaluate instance retrieval performance by matching 
the local patches obtained from each of the images.

The MPatchcs dataset 1551 consists of 1.5 million image 
patches. This dataset has been proposed for mitigating 
inconsistencies among diHcrent local descriptor evaluation 
protocols. It provides three benchmark tasks, each of which 
involves a precise evaluation protocol, on the data with three 
geometric noise levels: cosy. hard, and tough |55|. Hence, 
the HPatches dataset has been used for comparing the per­
formance of our method when faced with known levels of 
geometric noise.

Cl FAR-10 [561 is used in many studies to evaluate 
computational performance due to its consistent aspect 
ratio, fixed image dimensions, and the presence of natural 
images comprising all color channels. It contains 60,000 
color images from 10 object categories. In this study, we 
use Cl FAR-10 to compare how quickly the proposed model 
encodes the image patches into their binary codes.

parameters. We also report the encoding time of the pro 
posed l)NN in milliseconds.

4.3 Results and discussion

In this section, we describe the comparison of the proposed 
method with existing state-of-the-art local descriptors.

4.3.1 Patch matching task

We use the Brown dataset to evaluate the performance of 
the patch matching capability of our method. The dataset 
consists of image patches collected from three catego­
ries. namely Notre Dame. Liberty, and Yoscmitc |541. The 
comparison is accomplished using several handcrafted 
and learned binary descriptors as well as handcrafted and 
learned real-valued descriptors. Table I shows the 95% error 
rate performance comparison with all combinations of cross­
category training and testing configurations with the dimen­
sion of the descriptors.

Table 1 presents comparisons of different methods in sev­
eral categories, such as recd-valued-hcindcmfted. reat-vaf- 
ued-supervised, binary-vedued-supervised. binary-valued- 
handcrafted, and binary-valued-self-supervised. SIFT 181. 
which is in the first category, uses a histogram of oriented 
gradients, which contains 128 floating-point values. The 
floating-point precision leads to an exceedingly long com­
putation time for patch similarity matching. In the second 
category, the MatchNct [25] uses a DNN with 4 convolu­
tion layers for learning the features, a bottleneck layer for 
dimensionality reduction, and 3 fully connected layers to 
output pairwise patch similarity. The final metric network 
in the MatchNct operates on an extremely high-dimensional 
feature vector with floating-point precision. Additionally, 
it uses a Siamcsc-Iikc architecture |57| with two towers of 
the same network. Hence, supervision is mandatory during 
training. DccpComparc [22] uses an architecture similar to 
that of the MatchNct but with an additional decision net 
work. Thus, the evaluation of patch similarity is done on a 
high-dimensional feature vector with floating-point preci­
sion. Although these DNN-bascd approaches arc desirable 
in terms of patch matching, their use is limited due to a lack 
of generalizahi 1 ity, which is inherited from the supervised 
learning and the real-valued descriptors, thus making the 
patch matching task strikingly slower.

The methods in the third category require supervision 
during their training phases. Both the LDAHash [281 and 
D-BRIEF [27J methods show higher error rates than other 
methods of the same category. Both methods rely on the 
projection of handcrafted real-valued feature descriptors in 
Euclidean space to binary descriptors in Hamming space. 
The methods use sample images to learn the projection, 
but the results still inherit the performance bottleneck from

4.2 Evaluation metric

In this study, we evaluate the proposed method's ability to 
match the image patches provided by the aforementioned 
patch-based datasets. We also apply correspondence match­
ing for the instance retrieval task.

The patch-based datasets provide image patches with 
their ground truths. Hence, the recall and precision met­
rics arc used as the basis of the comparison. We use the 
95% error rate, which is defined as the false positive rate at 
0.95 of the true positive rate. The 95% error rate is identi­
fied by varying the Hamming radius used during similarity 
matching. This metric has been widely used for comparisons 
in related studies. We also use the mean average precision 
(mAP) percentage to evaluate the RomePatchcs dataset, as 
this is recommended as the standard metric for this dataset 
|331. In addition to the 95% error rate, we utilize the full 
receiver operating characteristic (ROC) curve to compare 
the proposed method with methods tested in related works.

The objective of instance retrieval tasks is to retrieve the 
given instance of the query image from a set of images by 
matching the local patches, which are obtained using a key- 
point detector. We use the mAP metric in the evaluation 
because it is the standard performance measurement met­
ric used in previous studies. Additionally, we employ the 
method involving the three tasks provided by the HPatches 
benchmarking scheme [55] to compare our model with state- 
of-the-art local descriptors.

The size of a DNN model can be expressed using the 
number of parameters and their levels of precision, both 
of which affect storage requirements. We present the num­
ber of parameters in millions and the uncompressed model 
size in megabytes to compare the numeric precision of the



their original features in Euclidean space. Of (he supervised 
methods. BinBoosi. RED. and Binary L2 Net 120] signifi- 
eantly outperform all sell supers ised methods, ineiuding our 
proposed approach. Hie superiority of these descriptors is 
inherited from the domain dependent supervision received 
during the training. However, our method shows a favorable 
result in the absence ot ground-truth data.

The lout tit and tilth categories include all un supervised 
methods m which BRISK |5|. BRIBE' | !6|, and ORB 115| 
are handcrafted, whereas DeepBit and DBD-MQ 1261 are 
learned with self-supervision. BRISK, BRIEE, and ORB use 
simple comparisons of pairs of pixels to encode the image 
patches. DBD MQ uses multiple autoencoders to learn fea­
tures and a binarization function in which DeepBit (581 uses 
the rigid sign function blindly on the data distribution.

Our method outperforms all the handcrafted and self- 
supervised binary descriptors for most of the image cat­
egory combinations. The only exception is that the DBD- 
MQ achieves a slightly better error rate for the Notre Dame 
category when the method is trained with Yosemite. We 
attribute the success of our approach to its ability to reduce 
the quantization error of the RBM through the contrastive 
divergence algorithm, thus preserving the discriminative 
power of the intermediate real-valued features. We also 
attribute the success of our model to its fine-tuning phase, 
which forces the model to learn more robust features even 
w hen dealing w ith different forms of geometric variance. 
Both the DBD-MQ and DeepBit arc intended to learn geo­
metrical transformation invariant encoding schemes in their 
optimization algorithm, but this optimization is applied only 
for the fcature-to-binary encoding network; the VGG convo­
lutional features are not optimized. The standard convolution 
features have limited rotational invariance [58]. Hence, wc 
believe that unoptimized convolution features cause slightly 
higher error rates associated w ith the DBD-MQ and DeepBit 
when compared w ith the proposed model.

The results obtained from the Brown dataset arc pre­
sented in Fig. 3. All pairs of image patches arc similar when 
our method is u>ed, though only the pairs from the first three 
columns are exact matches. This example shows that the 
proposed method is robust under blurring (first column), 
slight illumination variations (second column), and drastic 
variance in viewpoint (third column). The last column pro­
vides some examples of incorrectly matched patches for all 
three sets. However, the first incorrect pair shares the same 
content in extremely different orientations, though it is anno­
tated as a mismatching pair. The second mismatching pair 
also shares some architectural similarities, albeit in different 
orientations.

The last pair is also somewhat visually similar, with a 
slight scale difference and around 90° of orientation dif­
ference, perhaps because the visual information is overly 
abstracted from being trained with heavily augmented image

patches and because ol the line-tuning process introduced 
in this study.

E'igure 4 shows the ROC curves of different binary 
descriptors for all combinations of cross-category training 
and testing configurations of the image patches from the 
Browm dataset. Our method shows consistent performance 
for almost all the cases by maintaining a balance between 
robustness and discriminative power. The Notre Dame 
and Liberty datasets consist of weak visual similarity over 
different patches, whereas Yosemite consists of different 
patches that have a strong visual resemblance, making it 
the most challenging of the three datasets. Hence, most of 
the approaches, including our method, show a higher error 
rate for Yosemite than for the other two datasets. E’igure 4 
shows that most of the learning-based methods, including 
our approach, suffer from a high false positive rale when the 
Hamming radius is increased.

In summary, the results shown in Table 1 and Fig. 4 
reveal that the proposed DNN model outperforms all self- 
supervised binary descriptors using the 95% error rate for 
datasets that consist of drastic geometrical variance.

We use the RomePatches dataset to evaluate the cor­
respondence matching ability of our method when color 
patches are considered. The results in Table 2 are obtained 
by using 1000 query feature points and 9000 target feature 
points as specified in [33]. We record the mAP percentage 
of our method and compare it with the mAP percentages of 
several other binary and real-valued descriptors.

The first three descriptors are real-valued, and both CKN- 
grad [33] and AlcxNet-conv5 [10] require the features to be 
learned. The SIFT and CKN-grad perform better than any 
other descriptor, mainly due to the real-valued descriptors, 
which arc capable of coding more discriminative informa­
tion. CKN-grad uses convolution kernel features, which are 
somewhat like the convolutional features used in AlcxNet- 
conv3. However, wc believe that the CKN-grad performs 
much better than AlexNct-conv5 due to its much higher- 
dimensional descriptor, which allows it to encode more dis­
criminative information. FREAK [17] and BRISK [5] are
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Fig. 3 Correctly matched patches and incorrect matches from the 
Brown dataset. The topmost row shows 4 sample pairs of matched 
patches from Yosemite category, the middle one from Notre Dame 
and the last row of samples is from liberty dataset
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Fig. 4 ROC curves of different binary descriptors with of all combination of all cross-category training and testing configurations of image 
patches from Brown dataset

whan derailed binary descriptors, and they do not encode 
any color related information. Hence, their performance may 
not be affected by the existence of color. Additionally, they 
do not handle geometrical invariance in the same way that 
ORB | J51 does. The results show that ORB is better than any 
other handcrafted binary descriptor. We can attribute this 
observation to the geometrical invariance property of the 
ORB, as the patches in the RomePatches dataset also contain 
variation in terms of viewing angle. DccpBit performs better 
than any of the handcrafted binary descriptors but does not 
outperform any real-valued descriptor. DccpBit depends on 
the features optimized for image classification which is not

the intended purpose. Hence, it may perform worse than 
our method, which optimizes both the encoding scheme 
and the features. The evaluation results obtained using the 
RomePatches dataset reveal that our method, which involves 
a 32-byte binary descriptor, significantly outperforms the 
other binary descriptors, which involve 32-byte and 64-bytc 
code lengths. Our proposed model also achieves a slightly 
better mAP percentage than the AlexNet-conv5 real-valued 
descriptor. Our method is less effective than the remain­
ing real-valued descriptors. However, it is still favorable for 
color image matching considering descriptor dimensionality.

4.3.2 Instance retrieval tasks

Table 2 Performance of correspondence matching in terms of mAP 
(e/t) of different real-valued and binary descriptors on RomePatches 
dataset

In this subsection, wc demonstrate the instance retrieval 
performance of our method by using Paris, Oxford, and 
Holidays datasets through local image patch matching. 
The images in these datasets contain much geometrical 
and illumination variance. Therefore, wc apply our pro­
posed method to the correspondence matching task. Wc 
first employ a FAST [59] keypoint detector on the images to 
detect salient patches at four different scales. We then obtain 
the binary codes to match with Hamming distance between 
pairs of images. The initial feature learning process is com­
pleted using the ImagcNct 1LSVRC2012 dataset, and the 
training of the RBM and fine-tuning of the NIN are done by 
using the Landmark dataset. Table 3 shows the comparisons 
among two SIFT-bascd real-valued descriptors, three deep 
learned binary descriptors, and several other deep learned 
real-valued descriptors.

mAP RemarksDescriptor Bytes

Real-valuedCKN-grad 1331 
SIPT|8|
Alex Net-eonv 5 11 Of

1024 88.10
87.90
49.60

and128
extremely 
high dimen­
sion

256

Binary-valued 
and very 
low- dimen­
sion

1-KbAK 1171 
BRISK |51 
ORB 1I5| 
DccpBit 113| 
Ours

64 23.26
31.95
43.83
46.97
50.50

64
32
32
32

The bold value signifies the best mAP in the category relavenl to the 
proposed work



Table 3 mAP (7<) of instance retrieval performance on Paris, Oxford 
and Holidays datasets

In summary, all baseline binary descriptors, including 
the DeepBit. NC, with PCA. and ITQ. focus on learning 
efficient binary codes on deep learned and frozen features, 
which limits the robustness of the codes during corre­
spondence matching between image patches with a high 
degree of geometrical variance. Our method, in contrast, 
learns binary codes by line-tuning the weights of tillers 
to make the features more robust when drastic geometric 
variations arc present. We also compare the 128-bit and 
SI 2-bit versions of our descriptor to the 256 bit version 
(Table 3). We find that the 256-hit version is optimal, as no 
significant improvement could he gained over the dimen 
sionality extension.

Method Paris Oxford Holidays Remarks

SIFT-BOW 1521 
SIFT-IFV |M)|
CNN f aug + \s |6l | 79 5 68 0
1)1 ICI SI. I*;I 
Re DM . K’l |ft2|

400 >6.4
41 8

54.0 
62 6

Real-valued
high-dimensional

84.3 Real-valued 
high-dimen­
sional and 
larger models

86.8 46 5
94.7 78.3

H0 256{63.641 66 3 48.9
ITO 512 (63. 641 66 8 50.8
NC 4-PCA 256|48| -
NC +• PCA 512 1481 -
DeepBit 256 113) 82.5 60.3
DeepBit 512 113] 82.9 62.7
Ours + FAST 128 79.5 61.2
Ours + FAST 256 83.2 64.5
Ours FAST 512 83.3 64.7

67.1 Binary-valued
descriptors
low-dimen­
sional

3.9

55.7
55.7

78 9
78.9
81.8

4.3.3 Tasks from the HPatches benchmark82.7
80.0

To assess the performance of the proposed method on 
more diverse data with diverse tasks, we followed the 
strict evaluation protocols given in the HPatches bench­
mark |55I. The proposed method is compared with several 
competing self-supervised and handcrafted binary descrip­
tors as well as state-of-the-art real-valued descriptors on 
the three tasks as defined in 1551: matching, verification, 
and retrieval. The matching task is performed so that the 
descriptor’s matches between target and reference images 
can be measured. The verification task assesses the dis­
criminative power of the descriptor by separating posi­
tive pairs of patches from negative pairs of patches. This 
task is further divided into two experimental settings by 
taking the pair of images from the same patch sequence 
(intra-scquence verification) and different patch sequences 
(inter-sequence verification). The retrieval task measures 
the descriptors’ ability to retrieve similar patches from an 
extensive collection. The performance of the descriptor 
on each of the tasks is measured in terms of mean aver­
age precision. None of the learned descriptors used in the 
experiment used patches from the HPatches dataset during 
training.

Figure 5 shows that our method is comparable with all 
the binary descriptors—namely the BRIEF [I6|. ORE 
[ 15|, DeepBit (131, and DBD-MQ |26|—in all three tasks, 
and it even outperforms SIFT [81 in the patch verifica­
tion task. The results show that the performance of all 
of the existing binary descriptors, including our own, 
worsens when extreme geometrical and illumination 
noise is present (i.c., for the tough category). However, 
our method performs better in the hard category in which 
the patches have a significant noise level. Further, SKAR 
[36], SOSNct [35], and GcoDesc 134], which arc the best 
performing real-valued descriptors on HPatches dataset, 
show improvements over all three noise levels, whereas 
the binary descriptors improve only in the easy and hard 
categories. The results show that the performances of the

83.8
83.8

The bold values signify the best mAPs in the category relavcnt to the 
proposed work

Both the SIFT-BOW [52] and SIFT-IFV [601 use SIFT 
keypoints during correspondence matching to retrieve the 
instances. SIFT-IFV uses a fisher model to prepare the 
descriptor. This model typically performs better than bag- 
of-word (BOW)-bascd descriptors [60] (see the first two 
rows of Table 3). The performance of several deep learned 
real-valued descriptors such as CNN with augmentation on 
spatial search technique (CNN + aug + ss) [61], DF.FC1 [62], 
and ReDSL.FCI 162] is also mentioned in Table 3 for the 
comparison. The ITQ f63. 64]. neural code (NC)-bascd PCA 
[48]. and DccpBit are binary descriptors extracted from deep 
learned features. ITQ uses data-dependent optimization to 
reduce the quantization error in binarization, whereas NC 
with PCA uses PCA compression to obtain binary descrip­
tors. Both methods depend on pre-trained CNNs to extract 
the input features similar to the DccpBit. Hence, the poor 
geometrical invariance properties of the convolutional fea­
tures are inherited. Due to the use of mlpconv-based features 
in the fine-tuning approach, our approach outperforms the 
other three methods. Table 3 shows that our method, when 
combined with FAST keypoints, outperforms all deep learned 
feature-based binary descriptors with 256-bit codes. It also 
exceeds the mAP percentage of CNN features in the spatial 
search of the Paris dataset. Also, DF.FCI and ReDSL.FCl 
[62] significantly outperform all methods used for the Paris 
and Oxford datasets due to the dependency on the real-valued 
descriptor obtained from the fully connected (FC) layers of 
the network. However, the binary descriptors can perform 
matching tasks more quickly than the real-valued FC layer.
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Fig. 6 Average encoding time of an image from C1FAR-10 lor difi'er- 
enl methods4.3.4 Cost of the descriptor

We further evaluate the encoding time of our descriptor 
(Fig. 6). The average feature extraction time is calculated 
by using 1000 random images from Cl FAR-10 for both 
CPU and CUDA-cnablcd GPU. The experiments arc car­
ried out in a machine with an Intel Core i7 6700HQ pro­
cessor with four physical cores and an NVIDIA GTX970M 
GPU. We use SIFT and a CUDA implementation of SIFT 
[651, ORB, BRIEF, PCA-ITQ on SIFT, DBD-MQ, and 
DecpBil on VGG 16 features to make comparisons. The 
encoding time of our method is significantly faster than 
that of the DeepBit and PCA-ITQ on both CPU and GPU. 
The SIFT on GPU is faster than all other methods except 
for the BRIEF. Our method docs not outperform the SIFT 
in any corresponding platforms. However, the speed is 
comparable when both run on GPU. Further speedup 
can be observed in descriptor matching tasks owing to 
the benefits associated with our model being a binary­
valued descriptor. Comparison of binary-valued descrip­
tors involve in bitwise operations which arc much faster 
than floating point operations in typical CPU and GPU. 
DeepBit inherits the computational cxpcnsivcncss of the 
VGG 16 model. PCA-ITQ inherits the high computational

We compare the cost of our method in terms of the num­
ber of parameters used, storage requirements, and encoding 
time. We do not compare ihe matching speed of our binary 
descriptor with the speed of other descriptors because the 
results in this regard do not depend on which method is used 
but instead on the length of the binary codes. Table 4 sum­
marizes the complexity of the feature extraction models used 
in this study.

The NIN is exceptionally lightweight, and the perfor­
mance results demonstrated in the above section reveal 
that it is well suited to generate a robust and discriminative 
binary descriptor. In our method, we use one fully connected 
layer in addition to the NIN model, and we do not utilize a 
global average pooling layer. Therefore, the addition to the 
complexity of the original NIN model from the complete 
binary hashing model in our approach is negligible. Most of 
the comparable methods used in the experiments described 
in the above subsection use VGG 16 or AlexNct as the fea­
ture extractor. Hence, our approach is less expensive than the 
others when considering the cost of descriptors regardless of 
whether any nonsignificant performance gaps exist.



cost from the PC'A projection and SIFT in this experi­
ment. Our method, in contrast, consists of a four-layer 
N1N model with an RBM that consists of only one layer. 
Hence, the encoding time is much lower for our method 
than for the other methods that are compared. This result 
corroborates the number of parameters used in the mod­
els provided tn Table 4. Further, the GPU version of our 
method is also comparable with the ORB on CPU.
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4.3.5 Limitations

We found that it is difficult to train the proposed DNN 
because of the multiple steps involved that must be fol­
lowed alternately. This difficulty involves in consum­
ing more time in the training phase and selecting the 
hyperparameters.

Further, we stopped the training once the model had 
undergone at least one training and one fine-tuning session. 
This was done because the training process took a very long 
time. We accept this difficulty as a limitation of our work 
regardless of the performance exhibited by the empirically 
selected parameters and the termination criteria.
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