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1 Introduction

The global population is expected to rise from 7.3 billion in 2015 to 8.5 billion by 2030

(UNDESA, 2015). Accordingly, the percentage of the population living in urban areas

is expected to increase significantly, from 55.3% in 2018 to 60.4% in 2030

(UN DESA, 2018). In many countries, including India and China, the production

of enormous volumes of untreated wastewater and sewage sludge due to expeditious

industrialization and urbanization has become a serious problem. For example, China

alone produced 6.25 million tons of dry sludge from urban wastewater treatment facil-

ities in 2013 (NBSC, 2013).

Urban wastewater and sewage sludge are often loaded with various classes of envi-

ronmental contaminants, including heavy metals and metalloids, pharmaceuticals and

personal care products (PPCPs), food additives, surfactants, pesticides, pathogens, and

manufactured nanoparticles. Country- and region-specific regulations, such as the
Urban Waste Water Treatment Directive (UWWTD) in Europe, require that urban

wastewater and sludge be appropriately treated before they are used for other pur-

poses. Regional and national regulations dictate the appropriate treatment of urban
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wastewater and sludge before disposal, water reclamation, and resource recovery.

Sewage sludge is generated as solid or semisolid residue left over following urban

wastewater treatment processes (Fijalkowski et al., 2017).

The environmental fate of contaminants in urban wastewater and sludge remains
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unknown. Because urbanwastewater is a predominant source of emerging contaminants

globally (Rosal et al., 2010; Yang et al., 2017), the behavior and toxicity of these con-

taminants and their transformation products have become an issue of increasing social

and scientific concern. Conventional wastewater treatment processes cannot effectively

remove the ultralow amount of these complex environmental contaminants. The sludge

also contains a large amount of plant nutrients, but the toxic contaminant residues

remaining in the sludge after conventional wastewater treatment make the product unfit

for land application to grow crops. Advanced wastewater treatment technologies, such

as ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), membrane bioreactors

(MBRs), advanced oxidation processes (AOPs), and combined chemical and biodegra-

dation processes, can partially remove some of these emerging contaminants, but their

high cost is an issue with their use. This chapter discusses the scope of novel materials

and technologies based on carbon nanotubes (CNTs) for use in removing CECs from

urban wastewater, which potentially result in sustainable sludge management practices

in the water supply chain.

2 Types of contaminants in urban wastewater
A list of contaminants in urban wastewater, as well as their possible sources, is pro-

vided in Table 1. Contaminants in urban wastewater and sludge can be broadly clas-
sified into two categories: potentially toxic elements and organic pollutants. While all

heavy metals and metalloids fall into the first category, organic pollutants are classed

into numerous subgroups, including PPCPs, pesticides, and surfactants (Fijalkowski

et al., 2017; Lamastra et al., 2018; Tran et al., 2018). The key sources of heavy metals

and metalloids are industrial discharge and urban runoff, which encompasses both

lithospheric and atmospheric contaminants. The organic category of contaminants

mostly comes from domestic discharge and daily personal care products (PCPs),

including medicines and cosmetic products (Table 1).

The categorization of contaminants in sewage sludge varies from country to country.

There are only a few countries, such as Sweden, where a dedicated program undertakes

systematic sampling, analysis, and banking of sewage sludge (Olofsson et al., 2012;

Fijalkowski et al., 2017). Because most inorganic contaminants in the environment

are nonbiodegradable, they easily accumulate through the biomagnification process

once they enter the human body. Similarly, many complex organic compounds with

high molecular weight (e.g., brominated diphenyl ethers, polychlorinated naphthalenes,

and perfluorinated surfactants) are highly resistant to biodegradation.

The organic group of contaminants in sewage sludge can be extremely heteroge-

neous in terms of their physicochemical properties, such as molecular weight, water

solubility, hydrophobicity, pKa, and biodegradation potential (Harrison et al., 2006;

Fijalkowski et al., 2017; Lindholm-Lehto et al., 2017). Usually, a high concentration



of these contaminants in urban wastewater reflects their elevated content in the

corresponding sewage sludge collected from treatment processes (Fijalkowski

et al., 2017). The physicochemical characteristics of the sludge, including pH, elec-

trical conductivity (EC), elemental concentrations, organic contents, and microbial

Table 1 Urban contaminants and their possible sources

Contaminant

group Major contaminants Possible sources

Heavy metal

and metalloids

Zn, Cu, Cd, Pb, As, Cr Industrial and metallurgical

activities, car repair, printing

and paint, wood processing,

hairdressing, laundry, dental

surgery

Pharmaceutical

compounds

Codeine, paracetamol, tramadol,

venlafaxine, propranolol,

fluoxetine, iopromide,

carbamazepine

Treatment of common health

issues (e.g., pain relief, fever,

hypertension, seizure)

Antibiotics Treatment of bacterial and viral

diseases

Endogenous

estrogens

17β-estradiol, estrone Oral contraceptives

Brominated

diphenyl ethers

Multiple congeners Flame retardants in electronic

goods, furniture, and textiles

Polychlorinated

naphthalenes

Multiple congeners Incineration of waste materials

Food additives Acesulfame Artificial sweetener

Pesticides 2,4-D, 3,4-dichloroaniline,

carbaryl, diuron,

2-methyl-4-chlorophenoxyacetic

acid (MCPA), simazine

Herbicides and insecticides

Phthalates Dimethyl phthalate, diethyl

phthalate, dibutyl phthalate,

benzylbutyl phthalate,

diethylhexyl phthalate

Cosmetics and PCPs,

plasticizer

Pathogens Bacteria, virus, fungi, protozoa,

helminths

Carcass disposal, human waste

Nanoparticles Ag, Fe, Pt, ZnO, SiO2, TiO2,

CeO2, fullerene

Textiles, cosmetics, sunscreens,

paints, coatings, medical uses,

fuel catalysts

Perfluorinated

surfactants

Perfluorinated sulfonic acid,

perfluorinated octanoic acid

Aqueous firefighting foams
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loads, ultimately would influence the fate, mobility, and transformation of contami-

nants following application of the sludge in soil (Singh and Agrawal, 2008; Alvarenga

et al., 2015).



3 Urban wastewater treatment technologies

To deal with the environmental and health risks associated with urban wastewater,

continuous efforts are needed to develop appropriate treatment technologies before

556 Industrial and Municipal Sludge
the wastewater or sludge can be employed for secondary uses. In this regard, many

developed countries of the world already have made significant progress, at least

in addressing the basic stages of the problem, such as the removal of suspended solids

and pathogens. On the other hand, developing and underdeveloped countries are fac-

ing a continuous challenge in both urban wastewater treatment and sustainable surface

water management. Removing micropollutants and CECs from urban wastewater and

stormwater using conventional treatment processes has been a major problem facing

nations throughout the world (Petrovi�c et al., 2003; Talib and Randhir, 2017; Philip

et al., 2018).

Removal of CECs is such a challenge for several reasons: (1) the futility of current

water-treatment facilities; (2) the high cost of upgrading or reforming municipal sys-

tems and management policies; (3) the persistent (nondegradable) properties of CECs

and a general lack of belief that the CECs discharging from water treatment plants are

major problems; (4) the variety of occurring CECs, their concentration, and the lack of

well-developed treatment technologies; and (5) the lack of routine monitoring and

awareness about the levels of CECs in the influents and effluents of water treatment

plants. In addition, the lack of proper analytical methods of detecting contaminants,

inadequate information regarding their toxicity, effects, and behaviors in the environ-

ment, and little knowledge of their environmental and human health risks obstruct the

development and commissioning of new water treatment plants that can adequately

handle the issue of CECs (Naidu and Wong, 2013).

In many cases, conventional activated sludge processes (ASPs) are inadequate to

remove CECs from wastewater because they were originally designed to remove

biological oxygen demand (BOD) and suspended solids. Therefore, advanced treat-

ment processes, such as AOPs and membrane filtration, are needed. Membrane bio-

reactors (MBRs) have demonstrated greater efficiency of removing several

pharmaceutically active compounds, such as mefenamic acid, indomethacin,

diclofenac, propyphenazone, pravastatin, and gemfibrozil (Radjenovi�c et al., 2009).

González et al. (2007) reported that an MBR system outperformed an ASP system

in removing nonylphenolic surfactant compounds in a municipal wastewater treat-

ment plant. The MBR system eliminated 94% of the total nonylphenol ethoxylate

(NPEO)-derived compounds, as opposed to a total elimination of 54% of these mate-

rials by the ASP system. In particular, the ASP system performed poorly at removing

short-ethoxy-chain NPEOs and nonylphenoxy carboxylates (NPECs; González et al.,

2007). The removal efficiencies for sulfonamide, macrolide, and trimethoprim anti-

biotics with the MBR system were 15%–42% better than with the ASP system, but

the performance different dropped to only 20% when an ultrafiltration system was

used along with the conventional activated sludge (CAS) system (Sahar et al., 2011).

Similarly, for removing microbiological contaminants from urban wastewater, dis-

infection systems such as chlorination, ultraviolet (UV) radiation, and reactive



oxidation would be a better choice than a macrofiltration system made of pressure

sand filters or disc filters. However, membrane technology could replace the advanced

radiation and oxidation methods with equally superior performance (Gómez et al.,

2006; Ar�evalo et al., 2012; Álvarez-Arroyo et al., 2015). As a result, the past decade
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has seen a significant upsurge in research efforts to find effective and inexpensive fil-

ters and membrane materials for wastewater treatment. The remaining sections of this

chapter will discuss the role of one such material, carbon nanotubes (CNTs), in elim-

inating emerging contaminants from urban wastewater.

4 CNTs for CEC removal from wastewater
The unique physicochemical characteristics of CNTs make them suitable for a wide

range of applications in wastewater treatment, including adsorbents, membranes, and
catalysts (Sarkar et al., 2018). Fig. 1 shows the general principles and properties of

CNTs that enhance the removal of CECs, including heavy metals, PPCPs, microbial
Fig. 1 Schematic representation of various properties of CNTs that are useful for removing

emerging contaminants from wastewater.

Adapted from Sarkar, B., Mandal, S., Tsang, Y.F., Kumar, P., Kim, K.-H., Ok, Y.S., 2018.

Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review.

Sci. Total Environ. 612, 561–581.

Image of Fig. 1


contaminants, pesticides, and food additives from aqueous solution (Sarkar et al.,

2018; Yang et al., 2017).

The type of CNT, either single-walled (SWCNTs) or multiwalled (MWCNTs), can

influence the affinity of materials to CECs. SWCNTs are more effective than
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MWCNTs in adsorbing contaminants because of their superior specific surface areas.

The key functions of contaminant removal using CNTs involve adsorption, degrada-

tion, and detoxification to some extent. Furthermore, designing CNTs with surface

engineering might facilitate the removal of CECs. Modification and functionalization

of CNTs with magnetic compounds comprise one of the common approaches to sep-

arate nanoparticles and remove a range of CECs fromwater (Abdel Salam et al., 2012;

Alimohammadi et al., 2017; Li et al., 2017b). Table 2 summarizes examples of CEC

removal using CNT-based materials from aquatic environments.

4.1 Removal of heavy metals and metalloids

CNTs have been widely used to remove contaminants from water and wastewater due
to their highly porous structure, light mass density, large surface area, and strong inter-
actions with contaminants (Ihsanullah et al., 2016; Nyairo et al., 2018; Sarkar et al.,

2018). The adsorption of heavy metals on CNTs depends on the purity, porosity, sur-

face area, surface functional groups, and site density of CNT-based materials

(Ihsanullah et al., 2016). Four possible sites for contaminant adsorption on CNTs

are internal sites, interstitial channels, grooves, and outside surfaces. Among these

sites, the maximum amount of heavy metal adsorption takes place on CNT’s intersti-

tial channel, outer surfaces, and grooves (Ihsanullah et al., 2016; Heroux et al., 2006;

Jiang et al., 2005).

Surface modification has proved to enhance the heavy metal adsorption capacity

and selectivity of CNTs. The adsorption of heavy metals and metalloids on CNTs

can be improved by loading or depositing active components on CNTs and by simple

oxidative modification (Cho et al., 2010; Yu et al., 2011). In addition, func-

tionalization of CNTs with nonmagnetic or magnetic metal oxides (Addo Ntim and

Mitra, 2011; Gupta et al., 2011; Daneshvar Tarigh and Shemirani, 2013; Zhao

et al., 2010) and thiol and other sulfur-containing groups (Bandaru et al., 2013;

Gupta et al., 2014) can improve the performance of heavy metal removal by CNT-

based adsorbents.

Iron oxide particles such as goethite (α-FeO(OH)), hematite (α-Fe2O3), maghemite

(γ-Fe2O3), and magnetite (Fe3O4) can be used to alter CNTs for the purpose of remov-

ing ultralow concentrations of heavy metals from water (Addo Ntim andMitra, 2011).

CNTs modified with oxides of magnesium (Mg), aluminum (Al), and manganese

(Mn) are also efficient adsorbents of heavy metals in aqueous solution (Mubarak

et al., 2014). The removal capacity of heavy metals by CNT-based adsorbents depends

significantly on the type of CNTmodification or functionalization because the process

can alter the CNT surface area, surface charge hydrophobicity/hydrophilicity, and dis-

persion (Gupta et al., 2016; Ihsanullah et al., 2016). CNT-composites made of metal

oxide adsorb heavy metals through a combined mechanism of physisorption and

chemisorption (Addo Ntim and Mitra, 2011; Lu et al., 2017; Yang et al., 2018).



Table 2 Removal of various CECs from wastewater by CNT-based materials

Contaminants CNT material

Removal

capacity/

efficiency References

Heavy metals and metalloids

Hg(II) Thiol-

derivatized

SWCNTs

131mg/g Bandaru

et al. (2013)

Ni(II) and Sr(II) MWCNT-iron

oxide magnetic

composite

�80% Ni(II) at

pH 8; �95%

Sr(II) at pH 10.4

Chen et al.

(2009a)

Sr(II) and Eu(III) Oxidized

MWCNTs

�36% Sr(II);

�96% Eu(III)

Chen et al.

(2008)

Uranium Diglycolamide-

functionalized

MWCNTs

133.74mg/g Deb et al.

(2012)

As(III) and As(V) Iron oxide-

coated

MWCNTs

As(III) 1723μg/g;
As(V) 189μg/g

Addo Ntim

and Mitra

(2012)

Pb(II) Alumina-coated

MWCNTs

99% Gupta et al.

(2011)

PPCPs

Norfloxacin MWCNTs 84.7mg/g Yang et al.

(2012)

Ciprofloxacin SWCNTs 724mg/g Ncibi and

Sillanp€a€a
(2015)

Ofloxacin MWCNTs 80% Peng et al.

(2012)

Oxytetracycline SWCNTs 554mg/g Ncibi and

Sillanp€a€a
(2015)

Bisphenol A and 17β-estradiol SWCNTs 7.3%–95% Heo et al.

(2012)

Triclosan MWCNTs 157.7mg/g Zhou et al.

(2013)

Ibuprofen and triclosan HNO3-refluxed

SWCNTs

Ibuprofen

232mg/g;

triclosan

558mg/g

Cho et al.

(2011)

Ciprofloxacin Acid-heat

treated

MWCNTs

150mg/g Carabineiro

et al. (2011)

Pesticides

Atrazine Oxidized

MWCNTs

17.35mg/g Chen et al.

(2009b)

Continued
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Table 2 Continued

Contaminants CNT material

Removal

capacity/

efficiency References

Diuron Oxidized

MWCNTs

29.82mg/g Deng et al.

(2012)

Isoproturon MWCNTs 8.1mg/g Sotelo et al.

(2012)

Dicholbenil MWCNTs 17.5mg/g Chen et al.

(2011a)

2-Methyl-4-

chlorophenoxyacetic acid

SWCNTs 25.7mg/g De Martino

et al. (2012)

Microbial contaminants

Escherichia coli and Bacillus
subtilis

SWCNTs >90%

inactivation

Ahmed

et al. (2012)

E. coli K12 SWCNTs 79% inactivation Brady-

Est�evez
et al. (2008)

E. coli DH5α MWCNT-Ag 96% inactivation Su et al.

(2013)

Streptococcus mutans Modified

MWCNTs

Viable cell

reduced by 7.5 log

Bai et al.

(2011)

Swine influenza virus (SIV);

swine flu (H1N1)

SWCNTs Virus detection

limit:

180TCID50 mL�1

Lee et al.

(2011)

MS2 bacteriophage SWCNTs 9.3 and

9.8PFU/mL limit

detection

Prieto-

Simón et al.

(2015)

Influenza virus CNTs detective

limitation

>3.4PFU/mL

Ahmed

et al. (2016)

MS2 bacteriophage, along

with host E. coli
MWCNTs 5.8–7.4 log

inactivation

Rahaman

et al. (2012)

Food additives

Sulfites Glassy carbon

electrodes

functionalized

with MWCNTs

Detection limit

4.2μM
Sartori and

Fatibello-

Filho

(2011)

MSG Biosensors

functionalized

with SWCNTs

Detection limit

200μM
Juntae et al.

(2008)
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The capacity and efficiency of CNT-enhanced adsorption capacity further depend on

the heavy metal (or metalloid) properties, such as hydrolysis potential, ionic radius,

and hydration energy (Hu et al., 2011). CNT-based materials have demonstrated supe-

rior heavy metal removal from wastewater, but extensive studies, especially pilot- and
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full-scale experiments, are needed before they can be applied in real-life situations in

industry.

4.2 Removal of PPCPs

PPCPs have been discovered in surface water, groundwater, raw sewage, and treated
effluents globally. Even in trace concentrations, some of these contaminants can be
linked to significant ecological effects (Benotti et al., 2009; Chang and Wilton,

2009). For example, ibuprofen and triclosan, which are the commonly used PPCPs

in nonsteroidal antiinflammatory drugs and commercial disinfectants, are the typical

PPCPs found in aquatic environments. However, conventional drinking-water treat-

ment plants relying on coagulation could remove only a small portion of PPCPs from

aqueous solution (Westerhoff et al., 2005; Jung et al., 2015). On the other hand, CNTs

showed significant improvement in the removal of these compounds from aqueous

solution owing to the large surface area and O-containing functional groups of the

adsorbent material (Cho et al., 2011). Operating parameters, such as pH, temperature,

ionic strength, initial solution concentration, and contact time, significantly influence

the adsorption rate of PPCPs onto CNTs ( Jung et al., 2015). Of the various types of

CNTs, SWCNTs showed a greater capacity for adsorption of ibuprofen than

MWCNTs due to their larger surface area (1020 vs 283m2/g) and thin layer structure

(Cho et al., 2011).

Usually, wastewater samples contain a mixture of pollutants, including humic

acids, carbohydrates, proteins, and other biological building blocks, and the inter-

action of these pollutants may enhance or deteriorate the adsorption capacity of

CNTs. For example, all these compounds compete with diclofenac for binding sites

on the MWCNTs, while the adsorption capacity of diclofenac alone was signifi-

cantly greater than the mixed wastewater sample (Sotelo et al., 2012). Contaminant

properties like hydrophobicity also could affect their affinity for CNTs. For exam-

ple, disinfectant triclosan showed a noticeably stronger affinity for SWCNTs and

MWCNTs than ibuprofen due to the difference in hydrophobicity (i.e.,

logKow¼4.76 and 3.97 for triclosan and ibuprofen, respectively) (Cho et al.,

2011). In addition to hydrophobicity, the presence of specific functional groups

(e.g., OH groups) on the surface of PPCPs could enhance their adsorption on CNTs.

The OH groups in the PPCP molecules may create an attraction between the

adsorbed molecules and molecules in aqueous solution, and additional hydrogen

bonding may develop between the adsorbate’s OH groups and the adsorbent’s

O-containing functional groups (Lin and Xing, 2008).

CNTs have demonstrated great potential to remove a range of PPCPs from water

and wastewater due to their fibrous shape and large external surface area that are

accessible to PPCP molecules (Table 2). Electrostatic attraction, partitioning effects,

and π-π interactions between the aromatic molecules of PPCPs and CNT surfaces are



the key mechanisms of PPCP removal by CNTs (Sarkar et al., 2018). However, the

major barrier for application of CNTs in full-scale wastewater treatment plants is their

high production costs. The current market price of high-quality SWCNTs and

MWCNTs may reach $300 and $25/g, respectively (Sarkar et al., 2018), which can
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be prohibitive for treating thousands of gallons of wastewater in a large water treat-

ment plant. Furthermore, it is important to understand the physicochemical properties

of PPCPs and CNTs before commercialization of the materials for real-life applica-

tions in wastewater management.

4.3 Pesticide removal

The widespread use of pesticides in the agricultural industry, including urban agri-
culture, have significantly contaminated soil and water. Due to their heavy appli-
cation and their persistence, polar nature, and water solubility, they can disperse

in the environment, and their residues can cause long-term human health risks.

CNTs can potentially remove a range of pesticides because of their strong adsorp-

tion affinity to a wide variety of organic compounds (Table 2). Deng et al. (2012)

observed that a solution pH �7 favored the adsorption of diuron by pristine

and oxidized MWCNTs. Some pesticides were successfully recovered after the

CNT-based treatment, and the rate of recovery depended on the external diameter

of CNTs. El-Sheikh et al. (2007) observed that the highest recovery of atrazine was

accomplished by CNTs with external diameters of 40–60nm. Furthermore, short-

length CNTs (1–2μm) had greater pesticide recovery than long-length CNTs

(5–15μm) (Pyrzynska, 2011).

Surface functionalization of CNTs can remarkably increase the adsorption

capacity of pesticides (Dichiara et al., 2015; Deokar et al., 2017; Liu et al., 2018).

This is mainly due to the increase in pore volume and surface area of CNTs

after functionalization treatment. However, Hamdi et al. (2015) found the

application of amino-functionalized CNTs could reduce chlordane and p,p0-
dichlorodiphenyldichloroethylene uptake in lettuce plants by 57% and 23%, as

opposed to 88% and 78% for nonfunctionalized CNT applications, respectively.

Therefore, CNTs and their functionalized products can affect the availability of

pesticides to plants, i.e., CNTs can potentially prevent pesticides to be taken up in

plant edible parts. In another study, the adsorption capacity of pesticides (i.e.,

1-pyrenebutyric acid, 2,4-dichlorophenoxyacetic acid, and diquat dibromide) on

semiconducting-type SWCNTs were significantly higher thanmetallic-type SWCNTs

(Rocha et al., 2017). However, the application of CNTs for pesticide removal is

restricted to batch systems, and there is not as much information on pesticide removal

by CNTs than there is on other CECs (Sarkar et al., 2018).

4.4 Microbial contaminant removal

Microbial contaminants, including bacteria, viruses, and protozoa, present a major
human health issue in surface and drinking water (Smith and Rodrigues, 2015;
Sharma and Bhattacharya, 2017; Stillo and Gibson, 2017). The removal of microbial



contaminants by adsorption-based methods was practiced for many decades

(Hijnen et al., 2010; Babi et al., 2007). Conventional adsorbents, such as activated

carbon and polymers, can be used for removing microbial contaminants, but they

are not always effective enough to bring the quality level to that of drinking water
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(Smith and Rodrigues, 2015). Infectious bacterial breakouts due to the leakage of

these adsorption-based filter systems have been reported, which warrants the devel-

opment of a new generation of adsorbent materials. The structural and functional

properties of CNTs and their high affinitive interactions with microbial contaminants

can make them suitable for this purpose (Fig. 1 and Table 1).

Owing to their larger surface areas thanmany other adsorbents, CNTs inactivate bac-

terial cells and adsorb viral/bacterial spores with remarkable efficiency (Lu and Su,

2007; Brady-Est�evez et al., 2008). Brady-Est�evez et al. (2008) found that the E. coli
bacterial community was 100% retained by a poly(vinylidene fluoride) (PVDF)-based,

microporous-modified membrane with a thin layer of SWCNT. The SWCNT layer

increased the exclusion behavior of the modified membrane compared to normal PDVF

membrane. SWCNTs have a surface area of approximately 407m2/g and show a pref-

erential affinity for various bacterial species, which can be beneficial in removing path-

ogenic over nonpathogenic species selectively (Smith and Rodrigues, 2015; Sarkar

et al., 2018). CNTs also showed an immense potential for antimicrobial applications,

particularly drinking water disinfection (Table 1). The various geometries of CNTs

(e.g., tubes, sheets, and spheres) can affect their interactions with microorganisms in

different way. For example, MWCNTs usually show less antibacterial activity than

SWCNTs because the former are larger in diameter than the latter, reducing their

chances to invade the nucleus and their affinity to nucleic materials. The rod-shaped,

short SWCNTs have a higher affinity toward the bacterial community than MWCNTs.

Polymeric CNTs and CNT-metal oxide nanocomposites showed greater microbial

disinfection efficiency in water than unmodified CNTs. The poly-N-vinyl carbazole-
SWCNT nanocomposites could inactivate both Gram-positive and Gram-negative

bacterial cells in water with an efficiency of more than 80% (Ahmed et al., 2012;

Mejias Carpio et al., 2012). Nanoscale Ag particles, when deposited on CNTs using

ion beams, showed excellent bactericidal activity against Gram-positive and Gram-

negative species (Liu et al., 2007). However, modification of CNTs with antibacterial

agents like Ag could pose the risk of developing bacterial resistance, which should be

taken into consideration.

4.5 Food additive removal

To inhibit the growth of bacteria and enhance the appearance and flavor of food during
preparation, processing, and storage, various chemical additives, like sulfur dioxide,
sodium sulfite, and sodium and potassium metabisulfites are commonly used in food

and beverage products (Gan et al., 2013; Sang et al., 2014; Li et al., 2017a). Consump-

tion of these additives along with food on a regular basis can cause serious human

health issues. The consumption of food containing sulfite additives, which are highly

toxic, can cause hypersensitivity, nausea, diarrhea, gastric irritation, vomiting, food

poisoning, and asthma (Sartori and Fatibello-Filho, 2011; Walker, 1985).



The tendency to use these toxic additives in foods, including dried fruits, vegetables,

juice, fish, and beverages, has been steadily increasing in many countries. It is very

important to develop accurate analytical procedures to identify and quantify the trace

levels of food additives. Conventional analytical determination methods include
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conductometry, spectrophotometry, and electrophoresis, but these techniques are

highly costly and time-consuming, and sometimes they also have low sensitivity

and selectivity, making them unsuitable for routine food analysis ( Jankovskiene

et al., 2001; McLeod and Davey, 2007; Sartori and Fatibello-Filho, 2011).

The application of SWCNTs andMWCNTs as detectors of toxic food additives has

been proven useful due to their suitable structural (larger surface area), chemical

(functional groups), and electrical properties. Sartori and Fatibello-Filho (2011) pre-

pared a glassy carbon electrode that was modified and functionalized with MWCNTs

to determine the sulfite concentration in food samples, and the detection limit was

4.2μM. The MWCNT-modified glass electrode successfully detected sulfites in vin-

egar, coconut water, shredded coconut, and pickle water (Sartori and Fatibello-Filho,

2011). Juntae et al. (2008) prepared a flexible biosensor functionalized with SWCNTs

and tested its ability to detect food additives like monosodium glutamate (MSG). The

CNT-functionalized sensor showed a higher sensitivity to detect MSG (200μM) in

processed food than normal sensors. Therefore, CNT-based sensors can be more use-

ful to detect harmful food additives like MSG, which can cause a severe allergic reac-

tion in human beings ( Juntae et al., 2008). Also, sensors made of functionalized CNTs

can be sensitive, accurate, and precise and exhibit good reproducibility and stability

under heterogeneous working conditions. However, the production of this kind of sen-

sor can be costly, and further detailed analyses are required to assess its large-scale

application potential.
Fig. 2 Conceptual diagram showing the roles of CNT-based materials in treating wastewater

and achieving clean sludge.

Image of Fig. 2


5 Conclusions and future perspectives

CNTs can be promising materials for removing CECs from urban wastewater, and

thus they can be applied in practical water treatment plants in order to achieve sus-
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tainable sludge management. However, CNT-based membrane filtration needs to

be fully validated for its performance in pilot- and large-scale wastewater treatment

plants that are currently being tested.While the large-scale testing and optimization of

wastewater treatment processes using CNT technologies are important, the func-

tionalization and modification of CNT-based filtration/membrane materials are also

necessary for obtaining the best performance.

Cost can be the most prohibitive factor for advocating CNTs to the operators of

urban wastewater treatment plants. CNT-based wastewater treatment has not yet been

well studied, but it has been proved to be a promising technology for CEC removal. In

certain cases, such as when wastewater contains high loads of toxic heavy metals and

mixed microbial contaminants (virus/bacterial/fungal contaminants), CNT-based

treatment technologies can be economically feasible and even profitable. No existing

treatment method is capable of treating such complex wastewater in one step. The

treatment of heavy metal-loaded wastewater requires at least two steps (namely, pre-

cipitation followed by clarification). Thus, CNT-based methods would have tremen-

dous potential in this scenario because they have the potential to treat such wastewater

in a single step, thus overcoming the cost issue (Fig. 2). Similarly, wastewater treat-

ment to remove mixed microbial contaminants (viral/bacterial/fungal communities)

also requires at least two steps (boiling followed by adsorption), which could poten-

tially be replaced by a single-step treatment by CNT-based methods (Fig. 2).

Finally, the unwanted migration of CNTs into sludge at the end of the treatment

process also should be avoided because, like other manufactured nanoparticles, CNTs

might pose risks to some environmental organisms (Vithanage et al., 2017; Sarkar

et al., 2018). Thus, the removal of micropollutants and CECs from urban wastewater

via CNT-based membrane filtration can make the treated effluent fit for reclamation.

At the same time, it potentially makes sludge a by-product fit for sustainable uses such

as growing food crops and revegetating degraded lands (Singh and Agrawal, 2008;

Roig et al., 2012). Therefore, like other wastewater treatment methods, CNT-based

methods require a holistic technoecological assessment prior to their large-scale

deployment in water treatment plants promoting sustainable practices for sludge

management.
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