Utilizing Traditional Agricultural Knowledge for Ecological Restoration of the Knuckles Range in Sri Lanka: Potentials and Constraints

By

Godagama Gamachchige Ravi Nandana

Thesis Submitted to the University of Sri Jayewardenepura

for the award of the Degree of Master of Philosophy in

Geography on

15th August 2018

DECLARATION

The work described in this thesis was carried out by me under the supervision of Prof (Mrs) T.M.S.P.K. Thennakoon, and a report on this has not been submitted in whole or in part to any University or any other Institution for another Degree/Diploma.

.....

.....

Date

G.G.R. Nandana

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

.....

.....

Date

Prof (Mrs) T.M.S.P.K. Thennakoon

CERTIFICATION OF SUPERVISORS

"I certify that candidate has incorporated all the corrections, additions and amendments recommended by the examiners in this version of the M.Phil. thesis"

.....

.....

Date

Prof (Mrs) T.M.S.P.K.Thennakoon

Principal Supervisor

ACKNOWLEDGEMENT

I am deeply indebted to my principal supervisor, Prof (Mrs) T.M.S.P.K.Thennakoon of Department of Geography, the University of Sri Jayewardenepura whose stimulating motivation, tremendous support and invaluable ideas helped me in completing this research. It is a great honour to work under her supervision and without her guidance and steadfast support this thesis would not have been possible.

I sincerely acknowledge the support given by all the academic and non-academic staff of the Department of Geography, University of Sri Jayewardenepura. A special thank goes to Mr. Nalaka Hashan and Mr. Sajith Kulathunga, University of Sri Jayewardenepura, for the tremendous support given throughout this research. I am eternally grateful to my dear friend Mr. R.T.Thrimawithana of the University of Sri Jayewardenepura for his, encouraging words, affection and for being with me at my difficult times, and Mrs. Methmali Thrimawithana for the dedicated support given to I express heartful gratitude to my loving parents, brother and sister who me. continuously gave me confidence, motivation and priceless love, for being my strength in the journey of education. I appreciate the support given by all the GN Officers of the related areas for helping me to collect data. Their immense contribution made this research a success. I would also like to express my sincere thanks to Mr. Suranga Sirisena of the non-academic staff of Department of Geography, the University of Sri Jayewardenepura for all his support especially for providing me with accommodation in his own house when there were hurdles in transportation arose.

In conclusion, I wish to place on the record my gratitude for everyone whose names have not been mentioned above, but supported me in many ways, even by a word!

iv

TABLE OF CONTENTS

	Tabl	le of Co	ntents	v
	List	of Figu	res	X
	List	of Tabl	es	xxi
	Abb	reviatio	ns	xxvi
	Abst	tract		1
1.0	INT	RODU	CTION	4
	1.1	Introdu	uction	4
	1.2	Resear	rch Problem	10
	1.3.	Object	ives	12
		1.3.1	General Objective	12
		1.3.2	Specific Objectives	12
	1.4	Signifi	icance of the Study	13
2.0	LIT	ERATU	JRE REVIEW	16
	2.1	Introdu	uction	16
		2.1.1	Definitional Considerations	16
		2.1.2	Characteristics of Traditional Knowledge	18
		2.1.3	Ecological Restoration	19
	2.2	Conce	pts of Ecological Restoration in Traditional Ecological	27
		Knowl	ledge	

	2.2.1	Relating Traditional Ecological Knowledge to Ecological	27
		Restoration	
	2.2.2	Measuring ER using Traditional Ecological Knowledge	28
	2.2.3	Localization	29
	2.2.4	Validation of Traditional Agricultural Knowledge	29
2.3.	Ago-E	cosystems and Eco system Restoration in Sri Lanka	31
	2.3.1	Application of Traditional Agricultural Knowledge in Eco-	34
		System Restoration	
2.4.	Traditi	ional Agricultural Knowledge practices in Sri Lanka	37
	2.4.1	Sri Lanka Overview	37
	2.4.2	Traditional Agricultural Knowledge Practices in Matale	41
		District	
	2.4.3	Traditional Agricultural Knowledge Practices and	42
		Ecological restoration in Knuckles Region	
2.5.	Outco	me of the Literature Review	47
2.6.	Limita	tions and Constraints of the Literature Review	48
ME	THOD (DLOGY	50
3.1	Study	Area	50
	3.1.1	Selection of the Study Sites for Traditional Agricultural	53
		Knowledge	
	3.1.2	Selection of the Study Sites for Testing Ecological	58
		Restoration	
	3.1.3	Sampling	58

3.0

	3.2	Resear	rch Plan	67
	3.3	Data C	Collection	68
		3.3.1	Primary Data	69
		3.3.2	Secondary Data	72
	3.4	Data A	Analysis	72
		3.4.1	. Systematic Classification	73
		3.4.2	Soil Analysis	75
		3.4.3	Statistical Verification	75
	3.5	Data I	nterpretation	82
4.0	RES	ULTS /	AND FINDINGS	83
	4.1	Introdu		83
	4.2	Traditi	ional Agricultural Knowledge Used to Identify	84
		Enviro	onmental Degradation	
		4.2.1.	Traditional Agricultural Knowledge Used to Identify Soil	86
			Degradation	
		4.2.2	Traditional ecological methods used to identify Forest	117
			Degradation	
		4.2.3	Traditional Methods to Identify Water Pollution	144
		4.2.4	Traditional Methods to Identify the Degradation of Animal	147
			Diversity	
	4.3	Identif	ication of Traditional Agricultural Knowledge used in	150
		Ecolog	gical Restoration	

	4.3.1	Traditional Ecological Restoration Methods related to	150
		Home Garden Ecosystems	
	4.3.2	Ecological Restoration Methods Related to Paddy Eco-	184
		system	
	4.3.3	Features Associated with Every Eco-system Degrade by	214
		Chena Cultivation	
4.4	Classif	ication of Traditional Agricultural Knowledge used in	223
	Ecolog	cical Restoration	
	4.4.1	Classification of Traditional Agricultural Knowledge by	227
		Method	
	4.4.2	Utility Classification of Traditional Agricultural Knowledge	230
	4.4.3	Classification of Traditional Agricultural Knowledge	232
		Processes	
4.5	Spatial	Differentials of Traditional Agricultural Knowledge related	235
	to Ecol	logical Restoration	
	4.5.1	Spatial Differentials of Traditional Agricultural Knowledge	236
		used to identify Environmental Degradation	
	4.5.2	Spatial Differentials of Traditional Agricultural Knowledge	241
		used for Ecological Restoration	
	4.5.3	Spatial Differentials of Traditional Agricultural Knowledge	246
		used for Ecological Restoration in Home Garden Eco-	
		systems	
	4.5.4	Spatial Differentials of Traditional Agricultural Knowledge	251

used for Ecological Restoration in Chena Eco-system

	4.6.	Analys	is of Potentials and Constraints	253
		4.6.1	Potentials and Constraints in Paddy Eco-system	253
		4.6.2	Potentials in Home Garden Eco-systems	268
		4.6.3	Potentials in Chena Eco-system	282
		4.6.4	Limitations of Constraints on Traditional Agricultural	296
			Knowledge in Ecological Restoration	
	4.7	Referen	nce Eco system Model	301
5.0	DISC	CUSSIO)N	309
	5.1	Introdu	iction	309
	5.2	Traditi	onal Agricultural Knowledge used to identify Environmental	310
		Degrad	lation	
	5.3	Potenti	als and Constraints of utilizing Traditional Agricultural	315
		Knowl	edge for Ecological Restoration	
6.0	CON	ICLUSI	ION	327
7.0	LIST	ſ OF RI	EFERENCES	332
8.0	APP	ENDIC	ES	347

ix

LIST OF FIGURES

Figure 2.1:	The relationship between social, economic and environmental	23
	sustainability (adapted from Jepma & Munasinghe, 1998)	
Figure 2.2:	Model of Temporal and Spatial Scales Encompassed by	25
	Historical-Ecology Data. Source: Adapted from Higgs et al.	
	(2014)	
Figure 2.3:	Agro-ecological regions of Sri Lanka	32
Figure 2.4:	Number of households in four buffer zone villages of Knuckles	43
	1984 and 2003 (Lindstorm et al., 2012)	
Figure 2.5:	Land use and forest cover changes 1984- 2010 in Meemure and	44
	Pusse-Ela	
Figure 3.1:	Land use map of Knuckles range	51
Figure 3.2:	GN divitions of Knuckles range	52
Figure 3.3:	Selection procedure of villages	53
Figure 3.4:	Map of the 74 villages located in 56 GN divisions in the	54
	Knuckles range	
Figure 3.5:	Map of TAK clusters in the Knuckles region	56
Figure 3.6	: Selection of TAK villages	57

Figure 3.7:	Land use map of Gangala-Puwakpitiya (Puwakpitiya) GN	59
	division	
Figure 3.8:	Land use map of Kahagala GN division	60
Figure 3.9:	Land use map of Atanwala GN division	61
Figure 3.10:	Land use map of Meemure GN division	62
Figure 3.11:	Land use map of Pitawala GN division	63
Figure 3.12:	Land use map of Mahalakotuwa GN division	64
Figure 3.13:	Land use map of Pusse-Ela GN division	65
Figure 3.14:	Data Collection Methods	68
Figure 3.15:	The classification methodology	73
Figure 4.1:	Representation of Opinions expressed by the Sampled People on	88
	Methods of Identifying Soil Erosion	
Figure 4.2:	Classification of Soil according to the Traditional Method of	91
	Classifying Soil based on the Composition of Soil	
Figure 4.3:	Main and Subcategories of Soil based on Decisions of Farmers	93
Figure 4.4:	Summary of Components included in the Black Soil and their	94
	Levels	
Figure 4.5:	Summary of Components included in the Brown soil and their	96
	Levels	

Figure 4.6:	Summary of Components included in the Angula soil and their		
	Levels		

- Figure 4.7: Summary of Components included in the Gravelly clay and their 102 Levels
- Figure 4.8:Summary of Components included in the Gravelly sand (Boralu105Wella) and their Levels
- Figure 4.9: Summary of Components included in *Deni* soil and their Levels 107
- Figure 4.10: Summary of Components included in Paddy soil (*Kumburu Pasa*) 109 and their Levels
- Figure 4.11: Summary of Components included in the Root soil (Mul Pasa) 110 and their Levels
- Figure 4.12: Summary of Components included in the Meadow Black Soil 111 (Kalu Pasa) and their Levels
- Figure 4.13: Distribution of Deni Pasa 112
- Figure 4.14: Summary of Components included in the Muddy soil (Mada 113 Pasa) and their Levels
- Figure 4.15: Summary of Components included in the *Ron* soil (Ron pasa) and 114 their Levels
- Figure 4.16: Summary of Components included in the Hela soil (Pela pasa) 115 and their Levels

Figure 4.17:	Summary of Components included in the Marshy soil (Vaguru	116
	pasa) and their Levels	
Figure 4.18:	Indicators used to identify forest degradation by farmers	117
Figure 4.19:	Level of Abundance and Likelihood of Cutting Different plant	121
	species.	
Figure 4.20:	Type of Plant based on Height	126
Figure 4.19:	Level of Forest Degradation in each Plant Zone; Forest, Home	130
	Garden and Paddy Field	
Figure 4.20:	Correlation between the number of family members and the	132
	extent of the cultivated land	
Figure 4.23:	Identification of the Colour of Leaves	141
Figure 4.24:	Colour structure of the paddy plant identified 65-year-old farmer,	143
	Mr.W.G Appuhami, Puwakpitiya village	
Figure 4.21:	Utilization of Soil in Minimizing the Effects of Soil Erosion on	152
	Steep Slopes and Embankments	
Figure 4.22:	Method of preventing Soil Erosion by Mixing Soil (A-Mixing	153
	Brown soil and sand, B- Laying Soil according to Topography)	
Figure 4.27:	The relationship between harvest and the mode of fertilizer	156
Figure 4.23:	The Three Main Types of Helmalu system	157

Figure 4.29:	Helmalu Method No 01	158
Figure 4.24:	Relationship between the number of species varieties per land acre and harvest	177
Figure 4.31:	Variation of Abundantly Cultivated Crop Species according to Elevation	182
Figure 4.32:	Behavioral Map of Management related to Crops and Vegetation in Home Garden, and the Distribution of Plants	183
Figure 4.33:	Preparing a Paddy land according to Helmalu Method	186
Figure 4.34:	The Cross Section which shows Erosion in <i>Helmalu</i> Method related to Paddy Eco-system and the Distribution of Fertile Soil Areas	187
Figure 4.35:	Relationship between Water Management and to Soil Erosion	188
Figure 4.36:	Tilling with Plough	193
Figure 4.37:	Muddying with Plough	194
Figure 4.38:	Method of Digging with Mamotee in Paddy Eco-system No 01	195
Figure 4.39:	Method of Digging with Mamotee in Paddy Eco-system: No 02	195
Figure 4.40:	Method of Digging with Mamotee in Paddy Eco-system: No 03	196
Figure 4.41:	The Cross Section illustrating the Preparation of Beds in Sowing Paddy	197

Figure 4.42:	Madu plant (Cycas zeylanica)	199
Figure 4.43:	Method of Preparing the Mixture of Mee Muru Seeds	203
Figure 4.44:	Model of Land Use related to Pest Control through the	205
	Management of Plant Species	
Figure 4.45	Method of Pest Control through the Management of Ecological	206
	System	
Figure 4.46:	Adaptation to Environment through changing the Seasons of	207
	Cultivation	
Figure 4.47:	Classification of Regional Traditional Knowledge Methods which	228
	can be used for Ecological Restoration	
Figure 4.25:	Variation in the Utility of Traditional Knowledge Methods	231
	according to Utility Classification (Method-wise)	
Figure 4.26:	Classification of Traditional Knowledge Processes	234
Figure 4.50:	Spatial Differentials of Traditional Agricultural Knowledge used	236
	to identify Environmental Degradation	
Figure 4.51:	Spatial Differentials of Traditional Agricultural Knowledge used	237
	to identify Soil Degradation	
Figure 4.52:	Spatial Differentials of Traditional Agricultural Knowledge used	238
	to identify Forest Degradation	
Figure 4.53:	Spatial Differentials of Traditional Agricultural Knowledge used	239

xv

to identify Water Degradation

- Figure 4.54: Spatial Differentials of Traditional Agricultural Knowledge used 240 to identify Animal Degradation
- Figure 4.55: Spatial Differentials of Traditional Agricultural Knowledge used 241 for Ecological Restoration
- Figure 4.56: Spatial Differentials of Traditional Agricultural Knowledge used 242 for Ecological Restoration in Paddy Eco-system
- Figure 4.57: Spatial Differentials n of Traditional Agricultural Knowledge 243 used for Soil Restoration in Paddy Eco-system
- Figure 4.58: Spatial Differentials of Traditional Agricultural Knowledge used 244 for Ecological Restoration related to Water Restoration in Paddy Eco-system
- Figure 4.59: Spatial Differentials of Traditional Agricultural Knowledge used 245 for Ecological Restoration about Ecosystem Management in Paddy Eco-system
- Figure 4.60: Spatial Distribution of Traditional Agricultural Knowledge used 246 for Ecological Restoration in Home Garden Eco-systems
- Figure 4.61:Spatial Differentials of Traditional Agricultural Knowledge used247for Ecological Restoration of Soil in Home Garden Eco-systems
- Figure 4.62: Spatial Differentials of Traditional Agricultural Knowledge used 248 for Ecological Restoration of Vegetation in Home Garden Eco-

systems

- Figure 4.63:Spatial Differentials of Traditional Agricultural Knowledge used249for Ecological Restoration of Water in Home Garden Eco-system
- Figure 4.64: Traditional Agricultural Knowledge Used for Ecological 250 Restoration of Home Garden Eco-system
- Figure 4.65: Spatial Differentials of Traditional Environmental Restoration 252 Methodologies related to Chena Eco-system
- Figure 4.66: Percentage of paddy eco-system method in selected GN divisions 254
- Figure 4.67: ANOVA test on paddy Harvest per acre vs Method of cultivation 255 in paddy eco-system
- Figure 4.68:Summary of the relationship between mean difference harvest257quantity (Bushels) per acre and pairwise paddy cultivationmethods (± SE)
- Figure 4.69:Summary of the relationship between mean harvest quality (Total260quality) and paddy cultivation methods (± SE)
- Figure 4.70: Summary of the relationship between mean difference harvest 262 quality (Total quality) and pairwise paddy cultivation methods (± SE)
- Figure 4.71: Summary of the relationship between mean total ecological 265

quality and paddy cultivation methods

Figure 4.72:	Summary of the Relationship between Mean Difference Total		
	ecological Quality and pairwise paddy cultivation methods (\pm		
	SE)		

- Figure 4.73:Summary of the relationship between soil quality and method270"identifying soil erosion" (Method 01)
- Figure 4.74:Summary of the relationship between soil quality and method271"identifying eroded soil" (Method 02)
- Figure 4.75: Summary of the relationship between total ecological quality and 273 method "*Traditional Methods of Identifying the Sterility of the Soil*" (Method 04)
- Figure 4.76:The Relationship of Number of Species(Trees) vs Harvest275Income in Home Garden eco-systems
- Figure 4.77:
 Regression Analysis: Harvest Income versus Number of
 276

 Species(Trees)
 276
- Figure 4.27: Summary of the relationship between total ecological quality and 278 method "Controlling plant species method 01" (Method 23)
- Figure 4.79:Summary of the relationship between soil quality and method279"Helmalu eco-system method 01" (Method 20)
- Figure 4.80:Summary of the relationship between Total Ecological Quality280and method "Helmalu eco-system method 03" (Method 22)

- Figure 4.81:Summary of the relationship between Total Ecological quality281and method of "Helmalu eco-system method 02" (Method 21)
- Figure 4.82: Summary of the relationship between total ecological quality and 284 method "Identifying Forest Degradation based on the Extent of the Land Use" (Method 7)
- Figure 4.83: Summary of the relationship between total ecological quality and 285 method of "Water Management Methods Related to Home Garden eco-systems" (Method 29)
- Figure 4.84: Summary of the relationship between total ecological quality and 287 method "Management through Micro-environmental conditions" (Method 32)
- Figure 4.85: Summary of the relationship between total ecological quality and 290 method of identifying and preventing the spread of decease (Method 66)
- Figure 4.86: Summary of the relationship between total ecological quality and 292 method of "Consideration of the environmental factors of the soil" (Method 67)
- Figure Summary of the relationship between total ecological quality and 294
- 4.8728: method "Forest clearing" (Method 61)
- Figure 4.88: Summary of the relationship between total ecological quality and 295 method of "Controlling plant species" (Method 68)

Figure 4.89:	Percentage of families that have faced the labour migration in	
	sampled family units	

Figure 4.90:	Decay of Traditional Agricultural Knowledge related to each GN	300
	Division generation-wise	

Figure 4.91:Reference Eco system Model301

LIST OF TABLES

Table 2.1:	Verities of the Forest cover in Knuckless range	46
Table 3.1:	Demographic and Population data of the sample sites	66
Table: 3.2:	Summary of semi-directed group interviews conducted during the research	70
Table 4.1:	Knowledge of Sampled People on the Methods of Identifying Environmental Degradation	85
Table 4.2:	The Indicators of Identifying the Eroded and Non-eroded Soil	89
Table 4.3:	Soil Profile 1	95
Table 4.4:	Soil Profile 2	97
Table 4.5:	Soil Profile 3	98
Table 4.6:	Soil Profile 4	101
Table 4.7:	Soil Profile 5	103
Table 4.8:	Soil Profile 6	104
Table 4.9:	Soil Profile 7	106
Table 4.10:	Soil Profile 8	108
Table 4.11:	Level of Abundance and Likelihood of being Cut down by Different Plant Species.	119

Table 4.12:	The level of degradation, reasons and effects on each plant species.	124
Table 4.13:	The level of degradation in each types of forest in the selected villages	128
Table 4.2:	Past and the present average individual clearing of chena land in the selected villages (acres)	133
Table 4.15:	Types of plants used to identify fertility of the land.	136
Table 4.16:	Types of plant species used as indicators to identify very fertile lands	137
Table 4.17:	Harmful species of plants used as indicators to identify forest degradation	138
Table 4.18:	The characteristics of the plants and nature of degradations in each Eco-system	139
Table 4.19:	The characteristics and usability of water	144
Table 4.20:	Characteristics, flavour and suitability of water	146
Table 4.21:	Advantages of animals and nature of degradation due to lacking them	149
Table 4.22:	Methods of preparation and application of soil	151
Table 4.23:	Table 4.23: Methods of preparation soil	155

Table 4.24:	Regression Analysis: Harvest (Round 5000) versus quantity	156
	Fertilizer, village type	
Table 4.25:	Number of statements given by farmers in the study sites on	160
	knowledge base about pairs of species	
Table 4.26	: Interrelationship between Plant Species and Cultivation Methods	161
Table 4.27:	Users and Functions according to Plant Species	165
Table 4.28:	Identifying the Characteristics of Plant Species and the Ways of	176
	using for Multipurpose	
Table 4.29.	Relationship between the number of species varieties per land	178
	acre and harvest	
Table 4.30:	Adaptation to elevation by changing the crop varieties	179
Table 4.31:	Percentages of farmers using types of organic fertilizer in the	189
	selected sites	
Table 4.32:	Amount of Fertilizer used based on Soil Types and Reasons	191
Table 4.33:	Using Plant Species to protect the Quality of Soil and Methods	192
	used.	
Table 4.34:	Diseases and relevant results after using the mixture	200
Table 4.35:	Variety of Plants, Method of Preparing Mixture and the Usage for	201
	Application	

Table 4.36:	Favourable animals and restoration methods	209
Table 4.37:	Identifying diseases based on the Colour of Paddy Plants and Methods off Remedies used for them	211
Table 4.38:	Aspects which are focused on when Choosing a Land to prepare a Chena according to GN Divisions	216
Table 4.3:	Traditional Method of Identifying the Environmental Factors related to Soil	217
Table 4.40:	Pest Control Methods related to Chena Eco-system and its Regional Difference	220
Table 4.41	: The 68 Identified Traditional Agricultural Knowledge Methods	225
Table 4.4:	Summary ANOVA table of paddy Harvest per acre vs Method of cultivation	256
Table4.43:	Summary Table of Fisher pairwise comparison among paddy cultivation methods	258
Table 4.44:	ANOVA table of paddy harvest quality vs method of cultivation.	261
Table 4.45:	Fisher Pairwise Comparisons among Paddy Cultivation Method	263
Table 4.46:	Kruskal-Wallis Test: Total Ecological Quality versus the usage of "identifying eroded soil" (Method 02)	272
Table 4.47:	Kruskal-Wallis Test: Total Ecological quality versus the usage of Traditional Methods of Identifying the Sterility of the Soil"	273

(Method 04)

Table 4.48:	Analysis of Variance: Harvest Income versus Number of	276
	Species(Trees)	
Table 4.49:	Wallis Test: Soil Type versus usage of Traditional Methods of	277
	Plant management for multi-purpose " (Method 23)	
Table 4.50:	Kruskal-Wallis Test: Soil quality vs usage of helmalu eco-system	279
	method 01 (Method 20)	
Table 4.51:	Kruskal-Wallis Test: Soil Quality Type versus helmalu method 3	280
	(Method 22)	
Table 4.52:	Kruskal-Wallis Test: total Ecological Quality versus usage of	286
	method "Water Management Methods Related to Home Garden	
	eco-systems" (Method 29)	
Table 4.53:	Kruskal-Wallis Test: total ecological quality versus management	288
	through Micro-environmental conditions (Method 32)	
Table 4.54:	Chi-Square Test for Association: harvest, Soil Quality	289
Table 4.55:	Kruskal-Wallis Test: Harvest versus the usage of identifying and	291
	preventing the spread of decease method (Method 66)	
Table 4.56:	Kruskal-Wallis Test: total ecological Quality versus method of	293
	"Consideration of the environmental factors of the soil" (Method 67)	
Table 4.57:	Kruskal-Wallis Test: total ecological Quality versus Traditional	294
	method "Forest clearing" (Method 61)	

ABBREVIATIONS

TEK	Traditional Ecological Knowledge
GND	Grama Niladhari Division
DSD	District Secretariat Division
SD	Sustainable Development
ER	Ecological Restoration
IK	Indigenous Knowledge
ТАК	Traditional Agricultural Knowlwdge

Utilising Traditional Agricultural Knowledge for Ecological Restoration of the Knuckles Range in Sri Lanka: Potentials and Constraints

G.G.R. Nandana

ABSTRACT

The traditional knowledge in Sri Lanka has developed for a long period of time which has been perfected over the years to be a wealth of experiential knowledge. The utilities of this particular knowledge, which was built upon the human-environmental interconnections, are of high quality and have significantly assisted in preserving environmental sustainability. The analyzing of agricultural ecosystems in Sri Lanka proves this point. Due to the novel and technical developments occurred during the last five decades, a large number of traditional agricultural knowledge (TAK) strategies are facing the danger of extinction from local agricultural bodies. Furthermore, the balance of these environmental systems has fragmented, resulting in a number of environmental concerns. There is a dire need to mitigate the development of environmental degradation as well as for ecological restoration. The main purpose of this research was to identify the potentials and constraints for the aforementioned aspects by leveraging traditional agricultural knowledge.

For this particular research, the Knuckles range has been identified as the study areaThis study was conducted in selected 7 Grama Niladhari (GN) divisions, out of 77 in the Knuckles Conservation Region. Selection of GN divisions was done through vulnerable cluster analysis of the Purposive Multi-Dimensional Optimization method. Both primary and secondary data were used for the study, and the primary data were collected through interviews, observations and questionnaires. For data analysing, qualitative methods such as classification and regionalizing methods, case studies were used. With the help of simple statistical methods, as well as regression, correlation and multidimensional equations, the data were analysed quantitatively. Additionally, soil sampling tests were used to reconfirm details of TAK practices. Manual systematic methods were used to analyze data qualitatively and for spatial analysis, GIS Software was used. The statistical tool of Minitab was also used for analysis.

The study found that 68 TAK methods which are used to analyse vegetation, water, animal and soil the micro-components of the three main agroecosystems paddy, home garden and chena. When analyzing the quality characteristics and process of these methods, it was found out that there are methodologies to modify environmental adaptation qualities and other ecological elements as well as systematically develop ecosystem resistors. The 68 TAK methods were systematically categorized under method classification, process classification and utility classification and within each ecosystem, the human-ecological interconnectivity differs. With the use of utility classification, 32 potential methods that can be used for ER, which will be useful in the modern context, were identified.

Fifteen methods were identified to recognise environmental degradation. The spatial differentials of TAK methods which were classified underwent a map analysis which showed the variation of TAK methods in correspondence to ecological and climate variables.

Regression, Anova, Fisher Pairwise comparisons and Kruskal-Wallis Test were used to examine the potentials and constraints of TAK methods and the capabilities and trends to restore components of each of these ecosystems were also examined. These examinations also paved a way to identify methods to protect the ecological quality and the effectiveness of these methods were proven statistically. The limitations in usage was identified as a constraint and the extinction of TAK methods and the limitations of using TAK on large scale were identified as practical limitations.

A reference ecosystem model was developed based on the characteristics of the ecosystems in the Knuckles range, and a separate model was identified to revitalize a degraded ecosystem. It shows a high possibility of using TK for ER and thus it indicates the potential of verifying these TK methods and applying them in the modernized society is at a higher level. The identified Potetial practices can be recommended for sustainable agriculture in Sri Lanka through ecological restoration and minimizing environmental degradation.

Key Words: Ecological Restoration, Traditional Agricultural Knowledge, Reference Ecosystem, Environmental Degradation, Cultural Geography