Interoperability Framework For Application-Oriented Ontological Models

by

Mohamed Ishan Sabar

Ph.D

2019

Interoperability Framework For Application-Oriented

Ontological Models

by

Mohamed Ishan Sabar

Thesis submitted to the University of Sri Jayawardenapura for the award of the Degree of Doctor of Philosophy in Computer Science on

21st August 2019.

The work described in this thesis was carried out by me under the supervision of Dr. Prasad M. Jayaweera and Dr. E.A.T.A Edirisuriya and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Candidate's Name : Mohamed Ishan Sabar

Degree : Ph.D

Registration Number: 1454PS2014002

Submission Date : 21st August 2019

Candidate's Signature :

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Supervisors :

Dr. Prasad M. Jayaweera

Dr. E.A.T.A. Edirisuriya

Date :

Date :

Certification of Supervisors

We certify that the candidate has incorporated all corrections, additions, and amendments recommended by the examiners to this version of the PhD Thesis.

Supervisors :

Dr. Prasad M. Jayaweera

Dr. E.A.T.A. Edirisuriya

Date :

Date :

Table of Contents

	Page
List of Tables	xii
List of Figures	xiv
Abbreviations	xvii
Acknowledgements	xix
Abstract	xxi
1. Introduction	1
1.1 State-of-the-Art	1
1.2 Research Question	3
1.3 Research Goals	3
1.3.1 Established Knowledge Gap	4
1.4 Chosen Base Model	10
1.4.1 Base Model Requirements	10
1.4.2 Base Model Characteristics	10
2. Literature Review	12
2.1 Introduction to Health Level 7 (HL7)	12
2.2 HL7 in a Microcosm	17
2.3 SAIF in a Microcosm	20
2.3.1 Enterprise Comformance and Compliance Framework (ECCF)	21
2.3.2 Governance Framework (GF)	24
2.3.3 Behavioural Framework (BF)	24
2.3.4 Information Framework (IF)	24

2.4 HL7-SAIF Methodology in Operation	25
2.5 HL7-SAIF Issues	26
3. Materials and Methods	30
3.1 Research Analysis	30
3.1.1 Ontology Types	30
3.1.2 Ontology Evolution	30
3.1.3 Issues with Current Ontology Models	34
3.1.4 Healthcare Base-Model Framework	35
3.1.5 Hexa-Dimensional Ontology Model	37
3.1.6 Application Oriented Ontology Model (AOM) Diversity	37
3.1.6.1 Data-Driven AOM	38
3.1.6.2 Structural AOM	39
3.1.6.3 Relationship AOM	40
3.1.6.4 Semantic AOM	40
3.1.6.5 Temporal AOM	41
3.1.6.6 Hybrid AOM	41
3.1.7 Solution-related Artifacts	41
3.2 Research Validation	43
3.3 Healthcare Base-Model Solution Threads	45
3.3.1 Succinct Paradigmic Structures and Enhanced Line Efficiency	45
3.3.2 Specifications Traceability to Domain Requirements	46
3.3.3 Technology-Independent Ontology Representation	46
3.3.4 Technology-Independent HL7 Paradigms	47

3.3.5 Technology-Independent Specifications Development Process	49
3.3.6 Healthcare Standard Use - International Perspective	50
3.3.7 Universal Efficiency and Usage of Electronic Health Records (EF	HRs) 52
3.3.8 Intelligent, Synchronous Electronic Health Record (EHR) Operation	ion 52
3.3.9 Value-Added Reference Information Model (RIM) Enhancement	54
3.3.10 Value-Added SAIF Enhancement	55
3.3.11 Healthcare Standard Use - Asian Perspective	56
3.3.12 HL7-SAIF - Operational Perspectives	57
3.4 Unified Self-Actualized AOM Solution and Methodology	58
3.4.1 Healthcare Base-Model related Solutions	58
3.4.1.1 Succinct Paradigmic Structures and Enhanced Line Efficient	cy 58
3.4.1.1.i Merits of Universal UID Maintained Locally	61
3.4.1.1.ii Message Greening Process	61
3.4.1.1.iii Enhanced TCP/IP Functionality	64
3.4.1.1.iv Proposed Green TCP/IP – HL7 Interactions	64
3.4.1.2 Technology-Independent Ontology Representation	69
3.4.1.2.i Accrued Benefits	69
3.4.1.2.ii Issues with XML Representation	69
3.4.1.2.iii Unified DataAtom (UDA) Representation	70
3.4.1.2.iv Actual Visual of UDA Representation	80
3.4.1.2.v Techno-Platform Independence Injection	81
3.4.1.2.vi Issues with OWL-based Ontology Modelling	85
3.4.1.2vii Extended Unified DataAtom (UDA ⁺) Representation	n 86

3.4.1.2.viii Extended Syntax of UDA ⁺	87	
3.4.1.3 Technology-Independent HL7 Paradigms	89	
3.4.1.3.i Remodelling Methodology	89	
3.4.1.4 Technology-Independent Specifications Development Process	89	
3.4.1.4.i Multi-Landscape HL7 Development Paradigm	89	
3.4.1.4.ii Non-Uniform Vocabulary Issues	90	
3.4.1.5 Specifications Traceability to Domain Requirements		
3.4.1.5.i Domain Analysis Models (DAMs) and UML	92	
3.4.1.6 Universal Efficiency and Usage of Electronic Health Records (EHRs)	97	
3.4.1.6.i UDA-Driven Structural EHR Enhancement	99	
3.4.1.6.ii Enhanced EHR Development Methodology	101	
3.4.1.6.iii Enhanced Functional List for International Interoperability	105	
3.4.1.7 Intelligent, Synchronous Electronic Health Record (EHR) Operation3.4.1.7.i Electronic Health Record (EHR) Microcosm	115	
	117	
3.4.1.7.ii Features of the Intelligent, Interoperable EHR Learning		
Model	118	
3.4.1.7.iii Intelligent Learning Methodology	121	
3.4.1.7.iv Learning Predicates for Input	124	
3.4.1.7.v Intelligent Learning Algorithms	125	
3.4.1.7.vi Consolidation	126	
3.4.1.7.vii Stratification	128	
3.4.1.7.viii Implementation	131	
3.4.1.8 Value-Added Reference Information Model (RIM) Enhancement	132	

3.4.1.8.i RIM Issues	133
3.4.1.8.ii RIM-Refactoring Solution	137
3.4.1.8.iii Enhanced Value-Added RIM	141
3.4.1.9 Value-Added SAIF Enhancement	144
3.4.1.9.i SAIF Structure	145
3.4.1.9.ii Object Management Group's MDA Levels of Abstraction	147
3.4.1.9.iii RM-ODP Viewpoints or Dimensions	147
3.4.1.9.iv SAIF Issues in Detail	150
3.4.1.9.v Reengineered SAIF	152
3.4.1.10 Healthcare Standard Use in the Asian Perspective	157
3.4.1.10.i Pressing Requirements of IT-Oriented Healthcare	158
3.4.1.10.ii Challenges of IT-Oriented Healthcare	160
3.4.1.10.iii Nationwide IT-Oriented Healthcare Solution	161
3.4.1.10.iv Cost-Effective Nationwide Implementation	163
3.4.2 Ubiquitous, Unified, Self-Actualized, Application-Oriented Ontological	
Models (SA-AOMs)	165
3.4.2.1 SA-AOM Solution Overview	165
3.4.2.2 SA-AOM Solution Flowchart	167
3.4.2.3 SA-AOM Solution Process Description	168
3.4.2.4 SA-AOM Generation Circuit Diagram	177
3.4.2.5 SA-AOM Solution Processes	178
3.4.2.5.i Ubiquitous, Multi-Permutative Source AOM Incidence	
Interface	178

3.4.2.5.ii AOM Charting	180
3.4.2.5.iii Parser Transliteration	182
3.4.2.5.iv T ⁺ Ontology Model Transformation	183
3.4.2.5.v Derivation of Baseline Interoperability Ontology (BIO)	183
3.4.2.5.vi Consistency Preservation	186
3.4.2.5.vii Intelligent Heuristics for Elementary Self-Actualized	
Ontology (SAO) Derivation – Sentinel Ontology	187
3.4.2.5.viii Sentinel Ontology Restructuring	188
3.4.2.5.ix AOM Typing	189
3.4.2.5.x AOM Strength	189
3.4.2.5.xi Ontology Reengineering	191
3.4.2.5.xii Intelligent Enhancement of an EUR-Driven Network	194
3.4.3 Design Science Applicability	196
3.4.3.1 Background	197
3.4.3.2 Defining Design Science	198
3.4.3.3 Merits of Design Science	198
3.4.3.4 Design Science Objectives	199
4. Results	201
4.1 Healthcare Base-Model related Formalisms	201
4.1.1 Succint Paradigmic Structures and Enhanced Line Efficiency	201
4.1.1.1 Semantic Equivalence of Source and Target (Green) Messages	201
4.1.1.2 Enhanced TCP/IP-HL7 Efficiency	205
4.1.2 Technology-Independent Ontology Representation	210

4.1.2.1 Typical OWL-Modelled Ontology Segment	210
4.1.2.2 Techno-Platform Vocabulary Injection	210
4.1.2.3 T^+ Transformation Formalism	211
4.1.2.4 The Necessary Condition for T^+	217
4.1.2.5 T ⁺ Transformation Process	219
4.1.2.6 Completeness and Exhaustiveness of T^+	223
4.1.2.7 T ⁺ Syntactic Mapping	228
4.1.2.8 T ⁺ Semantic Validation	231
4.1.3 Technology-Independant HL7 Paradigms	242
4.1.3.1 Typical XML Message Segment	242
4.1.3.2 Transformation Equivalence	242
4.1.3.2.i T Transformation Formalism	243
4.1.3.2.ii The Necessary Condition for T	246
4.1.3.2.iii T Transformation Process	250
4.1.3.2.iv Completeness and Exhaustiveness of T	252
4.1.3.2.v T Syntactic Completeness and Validation	256
4.1.3.2.vi T Semantic Validation	258
4.1.3.2.vii UDA Transformation (T) Engine	267
4.1.4 Technology-Independent Specifications Development Process	267
4.1.4.1 Technology Non-Uniformity Issues	267
4.1.4.2 Uniform Vocabulary Injection	269
4.1.5 Specifications Traceability to Domain Requirements	271
4.1.5.1 Transformation Completeness Verification	271

4.1.5.2 Syntactic Mapping Sample	272
4.1.5.3 DAM Transformation Equivalence	274
4.1.5.4 The Necessary Condition for T^{ω}	278
4.1.5.5 T^{ω} Transformation Process	279
4.1.5.6 Completeness and Exhaustiveness of T^{ω}	280
4.1.5.7 T^{ω} Semantic Validation	283
4.1.6 Universal Efficiency and Usage of Electronic Health Records (EHRs)	292
4.1.6.1 Enhanced EHR Model Formalism	292
4.1.6.1.i EHR-S FM R2 Transformation Formalism	292
4.1.6.2 Conventional EHR Model versus Enhanced EHR Model	294
4.1.7 Intelligent Synchronous Electronic Health Record (EHR) Operation	297
4.1.7.1 Intelligent Learning Results	297
4.1.7.1.i Bayesian Learning	297
4.1.7.1.ii K-Nearest Neighbour	298
4.1.7.1.iii Learning Probabilities	298
4.1.7.1.iv Learning Transitions	300
4.1.7.1.v Probabilities and Learned Results	302
4.1.8 Value-Added Reference Information Model (RIM) Enhancement	303
4.1.8.1 RIM-related Common Vocabulary Injection	303
4.1.9 Value-Added SAIF Enhancement	305
4.1.9.1 Enhanced 3-Dimensional SAIF Equivalence	305
4.1.10 Healthcare Standard Use - Asian Perspective	311

4.1.10.1 Nationwide Goals in the Ministry of Health's (MOH)	
e-Health Mission	311
4.1.10.2 Cost-Effective Nationwide Implementation	315
4.2 Unified Self-Actualized Application-Oriented Ontology Modelling	
(SA-AOM) Framework	318
4.2.1 2-D Mesh to 3-D Lattice Ontology Transformation	318
4.2.1.1 Component Level	318
4.2.1.1.i Construction	318
4.2.1.1.ii Minimality of T^{M-L}	319
4.2.1.1.iii Tractable Power of T^{M-L}	320
4.2.1.2 Intra-Component Level Transformation (T^{M-L}_{c})	321
4.2.1.2.i Construction	321
4.2.1.2.ii Minimality of T^{M-L}_{c}	322
4.2.1.2.iii Tractable Power of T^{M-L}_{c}	323
4.2.2 Sentinel Ontology (SAO) Creation	323
4.2.3 The SAO Generation Algorithm	324
4.2.4 Analysis of SAO (Sentinel) Construction Algorithm	325
4.2.4.1 Construction	325
4.2.4.2 Usage	326
4.2.4.3 Completeness	328
4.2.4.4 Finiteness	329
4.2.4.5 Exhaustiveness	330
4.2.5 Special Treatment of Temporal and Hybrid AOMs	330

4.2.5.1 Temporal AOMs	330
4.2.5.2 Hybrid AOMs	331
4.2.5.3 Treatment and Analysis of Special AOMs	333
4.2.6 Reverse Common Vocabulary Injection	338
4.2.6.1 Reversed Common Vocabulary Equivalence	339
4.2.7 Source Image Restoration	341
4.2.8 Target SA-AOM Verification, Validation, and Delivery	342
4.3 Metrics and Performance Indicators (PIs)	344
4.3.1 Source AOM versus SAO – Strength and Robustness Comparison	346
4.3.2 Performance Indicators (PIs) in Action	347
4.4 Solution Proof and Validation	349
4.4.1 Design Science Cycle	349
4.4.2 Solution Analysis and Results	349
4.5 Advantages and Benefits of the UDA Representation	362
5. Discussion	373
. 5.1 Healthcare-related AOMs	373
5.1.1 Health Informatics at a Glance	373
5.1.2 Chosen Healthcare Standard Model	374
5.2 Achievement of Research Goals	377
5.2.1 To Develop a Framework for Healthcare using Ontology Modelling	
Techniques	377
5.2.2 To extend and extrapolate this framework to encompass any ubiquitous	
Application-Oriented Ontology Model	410

5.2.3 To validate the proposed framework to derive and generate the correspond	ing		
Self-Actualized (SA), Interoperable, and Inclusively-Efficient Target Ontol	ogy		
with guaranteed precision and minimal iterations, both in construction and	in		
operation.	413		
5.3 Complete Research Summary	418		
5.4 Advantages and Benefits of the Unified Final Solution at a Glance	426		
6. Conclusions			
6.1 New Research Limitations	435		
6.2 Future Directions	436		
REFERENCES	440		
APPENDICES			

Appendix 1 - List of Publications and Communication from this Research.

Appendix 2 – Research-related Presentations Made

Appendix 3 – Other Submissions to the Department of Computer Science,

University of Sri Jayawardenapura

List of Tables

Page

1.	Greening Conversion	62
2.	TCP/IP-HL7 vs Green – Enhancements	67
3.	UDA ⁺ DataAtom Syntactic Schema	88
4.	Enhanced Functional List for International Interoperability	106
5.	ECCF-SS related Services Artifacts	153
6.	Quantification of AOM Type	169
7.	Quantification of AOM Usage	172
8.	Syntactic and Semantic Consistency of Parser Transliteration – Phase 1	186
9.	2-D (Mesh) to 3-D (Lattice) Ontology Reengineering	191
10.	Intra-Component Level Enhancement	193
11.	Design Science related Artifact Types	199
12.	Performance Enhancement in Greened HL7-TCP/IP	207
13.	OWL-UDA Syntax Completeness Validation	228
14.	XML-UDA Syntax Mapping	257
15.	DAM to UDA Syntactic mapping Sample	273
16.	Conventional EHR-S FM R2 versus Enhanced EHR Model	294

17. Learning Run Results	301
18. Probabilities and Learned Results	302
19. HL7-based Unified Solution – MOH's Mission Accomplished	311
20. Nationwide Healthcare Facilities and related Computerette Costs	316
21. Average Usage Times for 3-D Lattice Ontology	326
22. Treatment and Analysis of Hybrid AOMs	333
23. SA-AOM Framework Verification and Validation	343
24. Relative Tractable Strengths and Robustness – source AOM versus SAO	346
25. Performance Indicators (PIs) in Action (for all non-trivial n >= 2)	348
26. Research-related DS Attributes	350
27. Greening Policy – Merits and Demerits	387
28. Complete Research Summary	419
29. Advantages and Benefits of the Unified Final Solution	426

List of Figures

Page

1. Lens of SAIF	16
2. Layered HL7-SAIF Operation	17
3. Syntactic versus Semantic Interoperability	19
4 ECCF Specification Stack	23
5. HL7 Specifications Development Paradigm	36
6. Hepta-Tier Self-Actualizing Application Ontology Model	
(SA-AOM) Framework	38
7. A Simple Alphabetic Trie	39
8. A Company Hierarchy	39
9. A Company E-R Diagram (or AOM)	40
10. Stepwise Research Methodology	44
11. HL7 v3 Message - Query Probe Sequence	60
12. <i>Green</i> TCP/IP – HL7 Architecture	66
13. Enlarged UDA Model	79
14. CDA Schema	80
15. UDA ⁺ DataAtom Structure	88
16. DAM Components	93

17. Enhanced Specifications Generation Process	95
18. Electronic Health Data - Pre-EHR	100
19. Conventional Electronic Health Record (EHR) Model	101
20. Enhanced Electronic Health Record (EHR) Model	102
21. Universal Electronic Health Record (EHR) Storage	124
22. Present RIM Structure	137
23. Enhanced RIM Ontology	140
24. Temporal Phase-wise RIM Refinement	141
25. Specifications Stack (SS) Axes	150
26. Enhanced 2-stage SAIF Structure	153
27. Supplemented Levels of Abstraction in the ECCF-SS	155
28. Reengineered ECCF-SS Model	155
29. A Model Computerette with Two Client Nodes	163
30. Self-Actualized Target AOM Spawn Process	168
31. Common AOM Topologies and Tractable Strengths	173
32. SA-AOM Generation Circuit Diagram	177
33. Ubiquitous Multi-Permutative Source AOM Incidence Interface	181
34. Hexa-Axial AOM Representation	182
35. Crop-Bump-LateralInsert Process	185

36. Intra-Component-Level Transformation	194
37. OWL Semantic Map	233
38. UDA Semantic Map	234
39. T^+ : OWL \rightarrow UDA ⁺ Mapping	238
40. XML Semantic Map	259
41. UDA Semantic Map	260
42. T : XML \rightarrow UDA Mapping	264
43. UDA Transformation (T) Engine	267
44. Typical OWL Segment	268
45. Typical RIM Segment	269
46. UDA ⁺ Semantic Map	283
47. T ^{\circ} : U \rightarrow UDA ⁺ Mapping	286
48. T^{EHR} : F \rightarrow U Mapping Example	293
49. Semantics Preservation	307
50. BIO Framework Transition Control	338
51. Research-related Design Science Cycle	349
52. UDA-based Annotation Post System	384
53. State Diagram for <i>netsal</i> Computation	397

Abbreviations

- 1. AOM : Application-Oriented Ontology Model
- 2. **BF** : Behavioural Framework
- 3. BIO : Baseline Interoperability Ontology
- 4. CDA : Clinical Document Architecture
- 5. **DAM** : Domain Analysis Model
- 6. **DM** : Data Modelling
- 7. EA : Enterprise Architecture
- 8. ECCF : Enterprise Conformance and Compliance Framework
- 9. **EEAF** : Enhanced Enterprise Architecture Framework
- 10. EHR : Electronic Health Record
- 11. **GF** : Governance Framework
- 12. GPRS : General Packet Radio Service
- 13. GPS : Global Positioning System
- 14. HL7 : Health Level 7
- 15. HL7-SAIF : Health Level 7 Service-Aware Interoperability Framework
- 16. IF : Information Framework
- 17. **II** : International Interoperability
- 18. **MDA** : Model-Driven Architecture

- 19. MOH : Ministry of Health
- 20. OMG : Object Management Group
- 21. **OWL** : Web Ontology Language
- 22. **RIM** : Reference Information Model
- 23. **RM-ODP** : Reference Model for Open Distributed Processing
- 24. SA : Self-Actualization
- 25. SA-AOM : Self-Actualized Application-Oriented Ontology Model
- 26. SAIF : Service-Aware Interoperability Framework
- 27. SI : Semantic Interoperability
- 28. SOA : Service-Oriented Architecture
- 29. WI : Working Interoperability
- 30. XML : Extended Markup Language

Acknowledgements

I acknowledge with thanks the tremendous assistance and support received by me from many individuals and institutions in conducting this research. Firstly, a word of appreciation goes to the Ministry of Health (MOH) for the valuable information in regard to the ongoing national e-Health campaign, and the relevant data and statistics about state-run healthcare institutions, facilities, and the information technology driven processes to upgrade and enhance services provided by them. This inceptive knowledge was invaluable, and key to determining the current state of national-level healthcare, thereby providing rudder and direction to this research and the achievement of its objectives.

The administration and staff of the Department of Computer Science, and the Faculty of Graduate Studies (FGS) of the University deserves a special word of thanks. Since my very first day in this program, they have been very helpful in the various procedures that need to be completed. Any queries or concerns were sorted out in a prompt and efficient manner.

I also wish to thank the Chair, the professors and the academic staff who were present at the many program-related oral presentations I made during the course of this research. Their feedback and advice was a very useful, helping to fine-tune and steer the project and research in the correct, onward direction. Thanks also goes to the 3rd year Computer Science students of the University to whom I delivered a talk on the background and salient points in Scientific Communication. Indeed, the great deal of interest and enthusiasm shown by them only fuelled my desire to pursue greater research, and disseminate the findings using novel, more efficacious communication means.

A kind word of thanks also goes to the various institutions, conferences, and international scientific journals which published communications arising from this research. The total of

xix

twelve publications was a fruitful and rewarding way to showcase the ongoing research findings, and indeed provided the stimulus and thrust to progress the research towards its ultimate goal.

Last but not least, it is with great appreciation that I mention the support and guidance given to me by my two supervisors Dr. Prasad M. Jayaweera and Dr. Ananda Edirisuriya in carrying out this research and compiling this thesis. Their advice and feedback was invaluable, and always timely, and indeed navigated the research in the right direction to completion. A grateful word of thanks to them both.

Interoperability Framework For Application-Oriented Ontological Models Mohamed Ishan Sabar

ABSTRACT

Ontological models define the foundational structure upon which ubiquitous domain applications are built. Whether it be the precision crafting of efficient static systems and immutable information models, or the design of fluid, formal workflows in diverse industrial and professional environments, ontologies and their associated modelling have always entailed the identification of components, their structure, and the associated inter-relationships. A temporal dimension has been identified with regard to dynamic, mutative environments, their *period* being perhaps just a *sliver* of a time measured in sub-second intervals, yet, their components operating with in-step synchronicity, ensuring efficient macro-system operation.

This research focused on the deeper study of ontology-driven domain applications. In comprehending and acknowledging the prime importance of ontologies, and their abundant, ubiquitous presence and use, the principle research problem was how to enact a *unified*, *secure*, versatile, *Self-Actualizing*, *Application-Oriented Ontology Model* (SA-AOM) *Framework* in order to overarchingly derive and generate *Self-Actualized* (SA), *interoperable*, *inclusively-efficient* target ontologies, with guaranteed precision and minimal iterations in construction and operation. This entailed the analysis of the spectrum of application-oriented ontology models, paying due attention to structure, definition, complexity, spread, depth, and usage.

The first phase of the research therefore focused on the chosen *healthcare* domain, and a study of prevalent healthcare standards and associated ontologies. It is fact that globally-instituted healthcare standards are few in number, and an appropriate base standard had to be chosen based upon the fulfillment of certain stringent criteria. Amongst them were that the

chosen standard should be *ontology-driven*, have potentially universal applicability and usage, afford effective and efficient means for interoperability and exchange of valued, accurate, and timely healthcare information, and be cost-effective and implementable even in the Sri Lankan context. The finest choice in this case was *Health Level* 7 (known as *HL*7) for its widespread use in the world's most developed countries where it has been instituted as the healthcare standard of choice in their respective National Health Services. Efficacious solution threads were devised for pressing issues. This *spawned* twelve scientific publications which were presented at eminent international scientific research fora. The next phase extended these findings and solutions to encompass ubiquitous, Application-Oriented Ontological Models (AOMs), with the principle aim of developing a *unified*, *interoperable*, *Self-Actualizing Framework* for any AOM. This solution framework should afford the fleetest, most efficient convergence to the final solution, irrespective of domain. An indepth, comparative study of the gamut of AOMs were performed, and novel artifacts and solutions were enacted and incrementally-integrated to formulate the unified SA-AOM framework. This framework generates optimally-efficient and interoperable target AOMs with minimal solution-convergence steps and iterations (termed Self-Actualized AOM or SA-AOM herein). Comprehensive correctness, validation, and rigor testing of the unified solution was also performed.

Summing up, this research efficiently-infused superlative *international interoperability* and *inclusive efficiency* in all *HL7-based* final specifications and allied systems construction. In addition, these solutions and artifacts were refactored, reengineered, and prudently extended to the realize the target *SA-AOM* framework, the definitive, unified, final research solution. The comprehensive findings and solutions are completely presented herein.