Investigating the effect of maternal
vitamin D levels on infant vitamin D
levels and determining the cut off values
for hypovitaminosis D among pregnant
mothers in Colombo District

By Anusha Kaneshapillai

PhD 2020

Investigating the effect of maternal vitamin D levels on infant vitamin D levels and determining the cut off values for hypovitaminosis D among pregnant mothers in Colombo District

By

Anusha Kaneshapillai

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Doctor of Philosophy in Biochemistry

DECLARATION

The work described in this thesis was carried out	by me under the supervision of Prof
G.S.H Liyanage, Prof. U.P.K Hettiaratchi, Prof. Sl	hamini Prathapan, Dr. K.C.D.P. Silva
and Prof. D.P.S. Gunasekara and the report on thi	s has not been submitted in whole o
in part to any university or any other institution for	anther Degree / Diploma".
A 1 17 1 '11 '	D. (
Anusha Kaneshapillai	Date

TABLE OF CONTENTS

TABLE OF CONTENTS	i
IST OF TABLES	
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	XV
ACKNOWLEDGEMENT	xviii
ABSTRACT	xxi
1. INTRODUCTION	01
1.1. General introduction	01
1.2. Justification	03
1.3. Objectives	05
1.3.1. Phase one	05
1.3.1.1. General objective	05
1.3.1.2. Specific objectives	05
1.3.2. Phase two	06
1.3.2.1. General objective	06
1.3.2.2. Specific objectives	06
2. LITERATURE REVIEW	07
2.1. Summary of finding	07
2.2. Overview of biochemistry and metabolism of vitamin D	08
2.2.1. Biochemistry of vitamin D	08

2.2.2. Sources of vitamin D	11
2.2.2.1. Sunlight exposure	11
2.2.2.2. Dietary intake	12
2.2.2.3. Supplementation	14
2.3. Serum vitamin D and its health outcomes	18
2.3.1. Vitamin D and bone health	18
2.3.2. Vitamin D and non-skeletal health outcomes	21
2.4. Definition of vitamin D deficiency	23
2.5. Risk factors of vitamin D deficiency	25
2.6. Role of vitamin D in pregnant & lactating mothers	27
2.7. Vitamin D and infants	29
2.8. Prevalence of vitamin D deficiency among mothers, infants	
and the correlation	30
2.9. Adverse effect of maternal vitamin D status on the offspring	33
2.10. Vitamin D toxicity	35
2.11. Laboratory analysis and quantification of vitamin D	36
MATERIALS AND METHODS	41
3.1. Phase one	42
3.1.1. Study Setting	42
3.1.2. Study design and population	42
3.1.3. Inclusion and exclusion criteria	42
3.1.3.1. Inclusion criteria	42

3.

3.1.3.2.	Exclusion criteria	43
3.1.4. Samp	oling	43
3.1.4.1.	Sample size	43
3.1.4.2.	Sampling technique	44
3.1.4.3.	Pilot study	44
3.1.4.4.	Recruitment of patients	45
3.1.5. Data	Collection	45
3.1.5.1.	The study questionnaire	46
3.1.5.2.	Quantification of vitamin D and calcium content	
	of the diet	47
3.1.5.3.	Sunlight exposure	48
3.1.5.4.	Clothing pattern of the participants	48
3.1.5.5.	Vitamin supplementation during pregnancy and	
	lactation	48
3.1.6. Anth	ropometric measurements of the infants	49
3.1.6.1.	Weight measurement	49
3.1.6.2.	Length measurement	49
3.1.6.3.	Occipito-Frontal Diameter/ Head circumference	50
3.1.6.4.	Anterio-Posterior Diameter and Transverse	
	Diameter of Anterior Fontanel	50
3.1.6.5.	Posterior fontanel	51
3 1 7 Blood	d hiochemical markers	51

	3.	.1.7.1.	Quality control of biochemical analysis	52
	3.	.1.7.2.	Vitamin D analysis	52
	3.	.1.7.3.	PTH analysis	55
	3.	.1.7.4.	Serum albumin, serum calcium, serum IP and	
			serum ALP analysis	58
		a.	Serum albumin assay	58
		b.	Serum calcium assay	59
		c.	Serum Inorganic Phosphorous assay	60
		d.	Serum Alkaline Phosphatase (ALP) assay	61
	3.1.8	. Ethica	l consideration	62
	3.	.1.8.1.	Informed consent	62
	3.	.1.8.2.	Blood sampling	62
	3.	.1.8.3.	Withdrawal or refusal to participate	63
	3.	.1.8.4.	Loss to follow up	63
	3.	.1.8.5.	Samples, records & reports	63
	3.1.9	. Statist	ical analysis	64
3.2	2. Pha	ise two		66
	3.2.1	. Study	setting	66
	3.2.2	. Study	population and design	66
	3.2.3	. Inclusi	on and exclusion criteria	66
	3.	.2.3.1.	Inclusion criteria	66
	3.	.2.3.2.	Exclusion criteria	67

3.2.4. Samp	ling	67
3.2.4.1.	Sample size	67
3.2.4.2.	Sampling technique	68
3.2.4.3.	A pilot study	70
3.2.4.4.	Recruitment of patients	70
3.2.5. Data	Collection	70
3.2.5.1.	The questionnaire	71
a.	Section 01	71
b.	Section 02	71
c.	Section 03	72
d.	Section 04	72
3.2.6. Blood	l biochemical markers	73
3.2.6.1.	Quality control of biochemical analysis	75
3.2.6.2.	Vitamin D analysis	75
3.2.6.3.	PTH analysis	77
3.2.6.4.	Serum calcium, serum ALP, serum IP and serum	
	albumin analysis	79
a.	Bone specific ALP assay	79
3.2.7. Ethica	al consideration	80
3.2.8. Statis	tical analysis	80
4. RESULTS		82
4.1. Phase one		82

4.1	.1.	Charac	eteristics of the study population	82
	4.1	.1.1.	Socio-demography of the population	82
	4.1	.1.2.	Vitamin and mineral supplementation	84
4.1	.2.	Serum	vitamin D and other biochemical parameters	84
	4.1	.2.1.	Association between serum vitamin D levels and	
			other biochemical parameters	88
4.1	.3.	Materr	nal serum vitamin D levels land infant serum	
		vitami	n D levels	90
	4.1	.3.1.	Correlation between maternal vitamin D levels	
			and infant vitamin D levels	90
	4.1	.3.2.	Association between serum vitamin D levels	
			during pregnancy and vitamin D levels during	91
			lactation	
	4.1	.3.3.	Association between maternal serum vitamin D	
			levels during pregnancy/lactation and infant	91
			vitamin D levels	
	4.1	.3.4.	Association between infant vitamin D levels and	
			maternal vitamin D levels during	
			pregnancy/lactation after elimination of	92
			confounding factors	
4.1	.4.	Seri	um vitamin D levels and diet	96
	4 1	4 1	Pregnancy and lactation	96

4.1.4.2.	Association between maternal serum vitamin D	
	levels and dietary vitamin D	97
4.1.4.3.	Infants	97
4.1.5. Serum	n vitamin D levels and sunlight exposure	97
4.1.5.1.	Pregnancy and lactation	97
4.1.5.2.	Infants	98
4.1.5.3.	Association between serum vitamin D levels and	
	sunlight exposure	98
4.1.6. Com	parison of serum vitamin D levels and infants	
anthi	ropometry	99
4.2. Phase two		103
4.2.1. Char	racteristics of the study population	103
4.2.1.1.	Socio-demography of the population	103
4.2.1.2.	Vitamins and mineral supplementation	104
4.2.2. BM	D and biochemical parameters of the study	
pop	ulation	105
4.2.2.1.	Blood biochemical parameters of the population	105
4.2.2.2.	BMD measures of the population	106
4.2.3. Seri	um vitamin D levels and sunlight exposure/ skin	
com	nplexion/diet	106
4.2.3.1.	Sunlight exposure	106
4.2.3.2.	Skin complexion	107

	4.2	2.3.3. Diet	108
	4.2.4.	Associations between serum vitamin D levels and	
		other bone biochemical parameters	110
	4.2.5.	Association between serum vitamin D levels and other	
		biochemical parameters, diet, sunlight exposure, skin	
		complexion and BMD after elimination of	
		confounding factors	113
	4.2.6.	Cut off for hypovitaminosis D based on PTH levels	115
	4.2.7.	Prevalence of hypovitaminosis D according to newer	
		cut off value	116
5.	DISCUS	SSION	118
	5.1 Seru	um vitamin D status among the study population	
	(pre	egnancy, lactation and infancy)	118
	5.2 Vitai	min D supplementation	120
	5.3 Skele	etal effects of serum vitamin D levels	121
	5.3.1	Serum vitamin D and blood biochemical parameters	121
	5.3.2	Serum vitamin D levels and BMD	124
	5.4 Asso	ociation between serum vitamin D (25(OH)D) and	126
	diet	tary vitamin D	
	5.5 Asso	ociation between serum vitamin D and sunlight exposure	127
	5.6 Asso	ociation between serum vitamin D levels and skin	
	comp	plexion	128

	5.7	Serum vitamin D levels and anthropometry	129
	5.7	7.1 Association between maternal serum vitamin D levels	
		and anthropometry of the infants	129
	5.7	7.2 Association between infant serum vitamin D levels	
		and anthropometry of the infants	130
	5.8	Cut off for hypovitaminosis D based on PTH level	132
	5.9	Prevalence of hypovitaminosis D	135
6	CONC	LUSIONS	138
	6.1	Phase one	138
	6.2	Phase two	139
	6.3	Limitations of the study	140
	6.4	Future recommendations	141
7	RE	FERENCES	
8	AP	PENDICES	
	Ap	pendix 01: List of publications, communications and awards	
	Pha	ase one	
	Ap	pendix 02: Information sheet English	
	Ap	pendix 03: Information sheet Tamil	
	Ap	pendix 04: Information sheet Sinhala	
	Ap	pendix 05: Informed written concern form English	
	Ap	pendix 06: Informed written concern form Tamil	
	Ap	pendix 07: Informed written concern form Sinhala	

Appendix 08: Study questionnaire

Appendix 09: ERC approval-USJ

Appendix 10: ERC approval-CSTH

Phase two

Appendix 11: Information sheet English

Appendix 12: Information sheet Tamil

Appendix 13: Information sheet Sinhala

Appendix 14: Informed written concern form English

Appendix 15: Informed written concern form Tamil

Appendix 16: Informed written concern form Sinhala

Appendix 17: Study questionnaire

Appendix 18: BMD datasheet

Appendix 19: ERC approval-USJ

Appendix 20: RDHS approval

LIST OF TABLES

Table 2.1:	Selected vitamin D supplementation guidelines by different	17
	organizations	
Table 2.2:	Risk factors of low serum vitamin D level	26
Table 2.3	Prevalence of vitamin D deficiency among mothers and their	31
	infant	
Table 3.1:	Sample allocations for the selected MOH areas in the RDHS	69
	area	
Table 4.1:	Socio-demographic characteristics of the study population	83
Table 4.2:	Blood biochemical parameters of the population	85
Table 4.3:	Classification of serum ALP in the study population	86
Table 4.4:	Vitamin D levels as per available IOM cut off levels	87
Table 4.5:	Vitamin D adequacy as per PTH levels in all three	87
	populations	
Table 4.6:	Correlation between serum vitamin D levels and other	90
	biochemical parameters	
Table 4.7:	Association between vitamin D levels during pregnancy and	91
	vitamin D levels during lactation	
Table 4.8:	Association between maternal vitamin D levels during	92
	pregnancy/lactation and infant vitamin D levels	
Table 4.9:	Association between infant vitamin D levels and maternal	94

	vitamin D levels during pregnancy (model summary)	
Table 4.10:	Association between infant vitamin D levels and maternal	95
	vitamin D levels during lactation (model summary)	
Table 4.11:	Food frequency of pregnant mothers	96
Table 4.12:	Maternal serum vitamin D levels between the dietary vitamin	97
	D sufficient and non-sufficient groups	
Table 4.13:	Anthropometric parameters of the infant population	99
Table 4.14:	Weight gain and weight categories of the infant population	100
Table 4.15:	Infant serum vitamin D levels and anthropometric parameters	101
Table 4.16:	Maternal serum vitamin D levels during pregnancy and infant	102
	anthropometric parameters	
Table 4.17:	Socio-demographic characteristics of the study population	104
Table 4.18:	Biochemical parameters of the study population	105
Table 4.19:	BMD measures of the study population	106
Table 4.20:	Exposure to sunlight, sun index and BSA of the study	107
	population	
Table 4.21:	Correlation between serum vitamin D levels and exposure to	107
	sunlight, sun index and BSA exposed during outdoor activity	
Table 4.22:	Skin complexion of the study population using NIS colour	108
	scale	
Table 4.23:	Food frequency of the population	109
Table 4.24:	Comparison of bone biochemical parameters between the	110

	vitamin D groups based on the sample mean	
Table 4.25:	Correlation between serum vitamin D levels and other bone	111
Table 4.26:	biochemical parameters	
	Association between serum vitamin D levels and other	114
	biochemical parameters, diet, sunlight exposure, skin	
Table 4.27:	complexion and BMD (model summary)	
	Sensitivity, specificity and accuracy levels for possible cut off	116
	for hypovitaminosis D	
Table 4.28:	Prevalence of hypovitaminosis D	117

LIST OF FIGURES

Figure 2.1:	Vitamin D metabolism	10
Figure 4.1:	Correlation between serum vitamin D and PTH among	88
	pregnant mothers	
Figure 4.2:	Correlation between serum vitamin D and PTH among	89
	lactating mothers	
Figure 4.3:	Correlation between serum vitamin D and PTH among	89
	infant population	
Figure 4.4:	Correlation between maternal serum vitamin D levels and	90
	infant serum vitamin D levels	
Figure 4.5:	Effect of sunlight exposure on infant serum vitamin D levels	98
Figure 4.6:	Correlation between serum vitamin D levels and PTH levels	111
Figure 4.7:	Correlation between serum vitamin D levels and calcium	112
	levels	
Figure 4.8:	Correlation between serum vitamin D levels and inorganic	112
	phosphorous levels	
Figure 4.9:	ROC for serum vitamin D levels based on PTH	115

LIST OF ABBREVIATION

MMN Multiple Micro Nutrient

CSTH Colombo South Teaching Hospital

OFD Occipito-Frontal Diameter

APDAF Anterio-Posterior Diameter of the Anterior Fontanel

TDAF Transverse Diameter of the Anterior Fontanel

FFQ Food Frequency Questionnaire

IFCT Indian Food Composition Table

WHO World Health Organization

rpm Rotate per minute

PTH Parathyroid Hormone

IP Inorganic Phosphorous

ALP Alkaline phosphatase

SD Standard Deviation

ELFA Enzyme Linked Fluorescent Assay

SPR The Solid Phase Receptacle

ELISA Enzyme Linked Immunosorbent Assay

HRP Horseradish peroxidase

TMB Tetramethylbenzidine

BCG Bromocresol green

ERC Ethics Review Committee

SPSS Statistical Package for Social Sciences

IQR Inter Quartile Range

VDD Vitamin D Deficiency

VDI Vitamin D Insufficiency

MOH Medical Officer of Health

CMC Colombo Municipality area

RDHS Regional Director of Health Services

BSA Body Surface Area

SOS Speed of Sound

BMD Bone Mineral Density

EDTA Ethylenediaminetetraacetic acid

CLIA Chemiluminescent Immuno Assay

RLU Relative Light Units

ROC Receiver Operating Characteristic

AUC Area Under the Curve

D₂ Ergocalciferol

D₃ Cholecalciferol

25(OH)D Calcidiol

1,25(OH)₂ Calcitriol

VDR Vitamin D Receptors

IOM Institute of Medicine

RIA Radio Immuno Assay

HPLC High Performance Liquid Chromatography

LC-MS/MS Liquid Chromatography-tandem Mass Spectrometry

DEQAS International vitamin external quality assurance scheme

p Significance level

r Correlation Coefficient

RR Relative risk

CI Confidence Interval

B Unstandardized Coefficients

ACKNOWLEDGEMENT

It is my pleasure to look back and remind the path I travelled during the days of hard work and determination. It is my turn to express my deepest sense of gratitude to all of those who directly and indirectly helped me in this journey.

I would very much like to express my sincere gratitude to my principal supervisor, Professor G.S.H. Liyanage (professor in Paediatrics, Department of Paediatrics, Faculty of Medical Sciences, University of Sri Jayewardenepura) for allowing me to be in this project. It couldn't have happened without you. I would also like to extend my appreciation and respect to you for your insight, knowledge and endless support, guidance, understanding, and patient during my study especially, when I encountered difficulties during the period of research work.

I would like to express my heartfelt gratitude to my supervisor Professor U.P.K. Hettiaratchi, (Professor in Biochemistry, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for your instructions, guidance and serious attitude gave me great encouragement and help.

I extremely grateful to express my sincere gratitude to Professor Shamini Prathapan, (
Professor in Community Medicine, Department of Community Medicine, Faculty of
Medical Sciences, University of Sri Jayewardenepura) for all the efforts she put throughout
the research work including the data collection and support in statistical analysis.

I would also like to express my gratitude to Dr. K.C.D.P. Silva (Senior lecturer, Department of Obstetrics and Gynaecology, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Professor D.P.S. Gunesekara (Department of Paediatrics, Faculty of

Medical Sciences, University of Sri Jayewardenepura) for their support during the research work.

I am most grateful to all the staff of the professorial units of Paediatrics, Obstetrics & Gynaecology of the Colombo South Teaching Hospital for their support during the phase one study. Also, I would like to express my gratitude to all the staff in the Medical Officers of Health of the Colombo District for their endless support throughout the sample collection during phase two of the study.

Many thanks go to Professor Sumedha Wijeratne (Vindana Reproductive Health Centre, Colombo 07) for giving me their laboratory facilities and knowledge to carry out the vitamin D and parathyroid hormone analysis without any hesitation throughout the research period. I would like to extend my gratitude to the Natures Only, Inc. Colombo for providing the miniomni ultrasound bone mineral densitometer throughout the research study without any hesitation. Very special thanks to Mr. Jenosan Velautham (Medical technician at Natures Only, Inc. Colombo) for his endless support in measuring the bone mineral density of the subjects throughout the data collection.

A special thanks go to Nishara Patterson and Sandaruwani Jayawardhana (trained phlebotomists) for their tireless effort and support extended throughout the research period during the sample collection.

A special thanks go to Mrs. Ganeshika (Technical Officer, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for her support during the analysis of the Konelab analyser.

Many thanks go to all my volunteer participants to take part in my study, without them this study would not have been possible.

I am grateful to the University research grant of the University of Sri Jayewardenepura (ASP/01/RE/MED/ 2015/40 and ASP/01/RE/MED/2018/59) for the financial assistance towards my research.

I sincerely thank to all my laboratory colleges in the Department of Biochemistry, Faculty of Medical Sciences and the University of Sri Jayewardenepura for their support during my research work.

I would like to express my love and deepest gratitude to my family members who behind me to make these all efforts possible. Most importantly, my deepest thanks go to my mother who stood by me in all the difficult situations as a pillar of support. Many thanks to my husband Jatheesan for his sacrificial and endless support throughout the research work and many tasks in my life.

This PhD thesis would not have been possible without the love and support of the people mentioned above. Thank you all for everything!

Investigating the effect of maternal vitamin D levels on infant vitamin D levels and determining the cut off values for hypovitaminosis D among pregnant mothers in Colombo District

Anusha Kaneshapillai

ABSTRACT

Many studies from South Asian countries have reported vitamin D deficiency among many age groups. However, there is very little information on vitamin D levels in the Sri Lankan community. State sector clinics do not provide vitamin D supplementation to pregnant or lactating mothers. Whereas most mothers who are followed up at private sector receive vitamin D. Further, suitability of current cut off values for our population has not been explored. Hence, objectives of this study were to evaluate the effects of maternal vitamin D levels on infant vitamin D levels & to determine cut off values for hypovitaminosis D among pregnant mothers in Colombo District. Current study was carried in two phases. In first phase, a cohort of 105 pregnant mothers in 3rd trimester, from an Obstetric unit of Colombo South Teaching Hospital in Sri Lanka was recruited & followed up till 6 weeks post-partum to study the effect of maternal vitamin D status on infant vitamin D levels. In second phase, 393 pregnant mothers in 3rd trimester were recruited from Medical Officer of Health (MOH) areas in Colombo District to determine cut off values for hypovitaminosis D. An interviewer administered questionnaire was used to collect socio demographic, medical, dietary and lifestyle data. Venous blood sample was collected for analysis of vitamin D, parathyroid hormone (PTH), inorganic phosphorous (IP), calcium and alkaline phosphatase (ALP). Bone mineral density (BMD) was also measured in 2nd phase in addition to previously mentioned parameters. In phase one study, correlations and relative risks with 95% CI (RR) were

performed to find out associations. Receiver Operating Characteristic (ROC) curve was performed to find out possible cut off for hypovitaminosis D based on the PTH values as per the manufacturers cut off (66.5pg/mL). In phase one, mean vitamin D levels (ng/mL) in pregnant mothers, lactating mothers, infants were 18.6±7.2, 20.6±6.9 & 11.4±5.6 respectively. Vitamin D had significant negative correlation with PTH [pregnant mothers (r=-0.295;p=0.002), lactating mothers (r=-0.249;p=0.011) & infants (r=-0.280;p=0.004)]. Maternal vitamin D levels during both pregnancy (adjusted odds ratio/OR:1.151;95%CI: 1.030-1.288) & lactation (OR:1.237;95%CI;1.063-1.440) had a significant positive correlation with infant vitamin D levels. Mothers who fulfilled recommended daily dietary vitamin D (≥600 IU/day) had higher serum vitamin D levels than mothers who did not meet recommended dietary vitamin D levels (<600 IU/ day). Maternal vitamin D during 3rd trimester of pregnancy or infant vitamin D level had no significant association (p>0.05) with infant anthropometry. In phase two, the mean vitamin D level of pregnant mothers was 18.6±7.5 ng/mL. Similar to phase one study, PTH correlated well (r=-0.220; p=0.000) with serum vitamin D. In mothers, vitamin D levels significantly correlated with exposure to sunlight (r=0.315; p=0.000). However, BMD measures didn't show a significant correlation (p>0.005) with vitamin D levels. Cut off for hypovitaminosis D derived from this study was 8.1 ng/mL using ROC curves (lower than the Institute of Medicine/IOM cut off) with an accuracy rate of 95.6% (corresponding sensitivity & specificity were 0.961 & 0.667 respectively). Prevalence of hypovitaminosis D according to newer cut off is 8.6% (n=09), 1.9% (n=02) & 54.3% (n=57) in pregnant mothers, lactating mothers & infants respectively, when newer cut off value is applied for phase one sample. Prevalence of hypovitaminosis D according to newer cut off among pregnant mothers in the Colombo District is 4.1% (n=16).