DSpace Repository

Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka

Show simple item record

dc.contributor.author Subasinghe, S.M.C.U.P.
dc.date.accessioned 2017-10-23T08:36:19Z
dc.date.available 2017-10-23T08:36:19Z
dc.date.issued 2015
dc.identifier.citation Subasinghe, S.M.C.U.P. (2015). "Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka", Journal of Tropical Forestry and Environment, Vol.5 (2), pp. 26-39 en_US, si_LK
dc.identifier.issn 2235-9370
dc.identifier.issn 2235-9362
dc.identifier.uri http://dr.lib.sjp.ac.lk/handle/123456789/6030
dc.description.abstract Attached en_US, si_LK
dc.description.abstract Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grandis using allometric relationships using the plantations of Nuwara Eliya and Badulla districts in Sri Lanka. Tree diameter and total height were measured for the samples trees and stem volume was estimated using a previously built individual model for the same species. Stem biomass was estimated using core samples mid carbon was determined using Walkley-Black method. Finally the biomass values were converted separately to the carbon values. Non-liner regression analysis was employed for the construction of models which had age as the explanatory variable. Linear regression was used in order to build die models to predict the above ground and stem biomass and carbon using volume as the explanatory variable. For both linear and non-linear types, the model quality was tested using R2 and fitted line plots. According to the results, stem biomass and carbon values at the 7th year were 110.8 kg and 68.7 kg respectively. Stem biomass and caibon values at the 40* year were 1,095.8 kg and 679.4 kg respectively. Caibon content at the age 20 was 62.0% from the stem biomass. Exponential models were proven to be better than the logistic models to predict the diameter, height, stem volume, biomass and carbon with age. R2 values and the fitted line plots indicated that the selected models are of high quality. Linear models built to predict die stem biomass and carbon using stem volume also showed the Ugh accuracy of these models wUch had R2 values above 97.9%
dc.description.abstract
dc.language.iso en_US en_US, si_LK
dc.publisher Journal of Tropical Forestry and Environment en_US, si_LK
dc.subject Eucalyptus grandis en_US, si_LK
dc.subject forest biomass en_US, si_LK
dc.subject forest carbon en_US, si_LK
dc.subject allometric equations en_US, si_LK
dc.title Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka en_US, si_LK
dc.type Article en_US, si_LK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account