DSpace Repository

Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media

Show simple item record

dc.contributor.author Ashiq, A
dc.contributor.author Sarkar, B
dc.contributor.author Adassooriya, N
dc.contributor.author Walpita, J
dc.contributor.author Rajapaksha, A.U
dc.contributor.author Vithanage, M
dc.date.accessioned 2020-08-25T09:16:28Z
dc.date.available 2020-08-25T09:16:28Z
dc.date.issued 2019
dc.identifier.citation Ashiq, A, et al.(2020)."Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media", Chemosphere 236 (2019) 124384 en_US
dc.identifier.uri http://dr.lib.sjp.ac.lk/handle/123456789/9032
dc.description.abstract This study evaluates a novel adsorbent for ciprofloxacin (CPX) removal from water using a composite derived from municipal solid waste biochar (MSW-BC) and montmorillonite (MMT). The composite adsorbent and pristine materials were characterized using powder X-Ray Diffraction (PXRD), Fourier- Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscope (SEM) before and after the adsorption. Batch experiments were conducted to study the mechanisms involved in the adsorption process. Ciprofloxacin sorption mechanisms were interpreted in terms of its pH-dependency and the distribution coefficients. The SEM images confirmed the successful binding of MMT onto the MSW-BC through flaky structure along with a porous morphology. Encapsulation of MMT onto MSW-BC was exhibited through changes in the basal spacing of MMT via PXRD analysis. Results from FTIR spectra indicated the presence of functional groups for both pristine materials and the composite that were involved in the adsorption reaction. The Hill isotherm model and pseudo-second-order and Elovich kinetic models fitted the batch sorption data, which explained the surface heterogeneity of the composite and cooperative adsorption mechanisms. Changes made to the MSW-BC through the introduction of MMT, enhanced the active sites on the composite adsorbent, thereby improving its interaction with ionizable CPX molecules giving high sorption efficiency. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.subject Emerging contaminants Biochar Antibiotics Wastewater Pharmaceuticals en_US
dc.title Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media en_US
dc.type Article en_US
dc.identifier.doi 10.1016/j.chemosphere.2019.124384 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account