dc.contributor.author |
Diunugala, H.P |
|
dc.contributor.author |
Mombeuil, C |
|
dc.date.accessioned |
2022-01-24T04:43:51Z |
|
dc.date.available |
2022-01-24T04:43:51Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
Diunugala, H.P., Mombeuil, C.(2020). Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods, Journal of Tourism, Heritage & Services Marketing, Vol. 6, No. 3, 2020, pp. 3-13 |
en_US |
dc.identifier.uri |
http://dr.lib.sjp.ac.lk/handle/123456789/9751 |
|
dc.description.abstract |
Purpose: This study compares three different methods to predict foreign tourist arrivals (FTAs) to Sri Lanka
from top-ten countries and also attempts to find the best-fitted forecasting model for each country using five
model performance evaluation criteria.
Methods: This study employs two different univariate-time-series approaches and one Artificial Intelligence
(AI) approach to develop models that best explain the tourist arrivals to Sri Lanka from the top-ten tourist
generating countries. The univariate-time series approach contains two main types of statistical models,
namely Deterministic Models and Stochastic Models.
Results: The results show that Winter’s exponential smoothing and ARIMA are the best methods to forecast
tourist arrivals to Sri Lanka. Furthermore, the results show that the accuracy of the best forecasting model
based on MAPE criteria for the models of India, China, Germany, Russia, and Australia fall between 5 to 9
percent, whereas the accuracy levels of models for the UK, France, USA, Japan, and the Maldives fall between
10 to 15 percent.
Implications: The overall results of this study provide valuable insights into tourism management and policy
development for Sri Lanka. Successful forecasting of FTAs for each market source provide a practical planning
tool to destination decision-makers. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Journal of Tourism Heritage & Services Marketing |
en_US |
dc.subject |
foreign tourist arrivals, winter’s exponential smoothing, ARIMA, simple recurrent neural network, Sri Lanka |
en_US |
dc.title |
Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods |
en_US |
dc.type |
Article |
en_US |